Tumor progression is a complicated process influenced by multiple factors, in which the acidic tumor microenvironment (TME) and altered tumor-associated membrane proteins (TA-MPs) are closely involved. Monitoring the status of these factors is of significance for tumor progression research. Here, we develop a novel probe for simultaneously imaging the acidic TME and TA-MPs in situ. In this probe, i-motif-forming sequences (strand I) are conjugated to a gold nanoparticle (AuNP) via gold-sulfur bonds for acid-response. Extended aptamers (strand A) for protein recognition are labeled with Cy3 and Cy5 respectively at two ends. The extended part of strand A hybridizes with strand I to quench Cy3 by the proximal AuNP, and the protein recognition part hybridizes with a strand labeled with BHQ2 (strand Q) to quench Cy5. When the integrated probe encounters an acidic TME, the strand I fold into i-motif quadruplexes and release the AQ duplexes from the AuNP, enabling Cy3 to be lit to indicate the acidic TME. The aptamers in AQ duplexes bind to target proteins, removing the hybridization between strand A and Q thus leading to the fluorescence recovery of Cy5 for in-situ imaging of the proteins. Fluorescence measurement and confocal microscopy imaging showed that the probe could sensitively respond to the alteration in acidity from pH 7.4 into pH 6.5, which is coincide with the acidity gap of extracellular microenvironment between normal and tumor cells. Besides, it enabled the in-situ imaging of MUC1 proteins on living cell surface, revealing their expression level and distribution. This probe demonstrates a new approach for simultaneously imaging the acidic TME and TA-MPs, providing a useful tool for multifactor research of tumor progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122284 | DOI Listing |
Int J Pharm X
June 2025
Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China.
As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.
The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
Development of radiosensitizers with high-energy deposition efficiency, electron transfer, and oxidative stress amplification will help to improve the efficiency of radiotherapy. To overcome the drawbacks of radiotherapy alone, it is also crucial to design a multifunctional radiosensitizer that simultaneously realizes multimodal treatment and tumor microenvironment modulation. Herein, a multifunctional radiosensitizer based on the CuBiS-BP@PEI nanoheterostructure (NHS) for multimodal cancer treatment is designed.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.
Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!