A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic insight into the binding of graphene oxide with human serum albumin: Multispectroscopic and molecular docking approach. | LitMetric

Mechanistic insight into the binding of graphene oxide with human serum albumin: Multispectroscopic and molecular docking approach.

Spectrochim Acta A Mol Biomol Spectrosc

Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India. Electronic address:

Published: July 2021

Increasing manufacturing and use of nanoparticles in industrial and biomedical applications creates the necessity to understand the impact of the interaction of nanoparticles with biomacromolecules. In the present study, graphene oxide nanosheets (GONS) were synthesized using modified Hummer's method and further characterized employing X-ray diffraction (XRD), UV, FTIR, and Raman spectroscopy. After characterization, the interaction of GONS with human serum albumin (HSA) was investigated to delineate the binding mechanism employing different kinds of spectroscopic techniques. Intrinsic fluorescence spectroscopy revealed that complex formation is taking place between HSA and GONS. Fluorescence-based binding studies suggested that GONS binds to HSA with a significant binding affinity, and the interaction is governed by dynamic quenching. The evaluation of enthalpy change (ΔH) and entropy change (ΔS) suggested that the HSA-GONS complex formation is driven by hydrogen bonding and van der Waals interaction and hence complexation process is seemingly specific. Structural transition in the microenvironment of HSA was monitored using synchronous fluorescence spectroscopy and three-dimensional fluorescence spectroscopy, which showed that GONS binding to HSA influences the microenvironment around tyrosine and tryptophan residues. Secondary structural alterations in HSA upon binding to GONS were measured using circular dichroism (CD) spectroscopy. Additionally, molecular docking provided an insight into the critical residues involved in HSA-GONS interaction and further validated our in vitro observations affirming interaction between GONS and HSA. The significance of this study is attributable to the fact that HSA and GONS can be used as nanocarriers in drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119750DOI Listing

Publication Analysis

Top Keywords

fluorescence spectroscopy
12
graphene oxide
8
human serum
8
serum albumin
8
molecular docking
8
gons
8
interaction gons
8
hsa
8
complex formation
8
hsa gons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!