Ammonia removal in selective catalytic oxidation: Influence of catalyst structure on the nitrogen selectivity.

J Hazard Mater

State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China; State-Local Joint Engineering Laboratory of Precious Metal Catalytic Technology and Application, Kunming Sino-platinum Metals Catalysts Co. Ltd., Kunming 650106, China. Electronic address:

Published: August 2021

Selective catalytic oxidation is regarded as an effective and favored method for the removal of hazardous ammonia. A number of M-Pt/USY (M=Mn, Fe, Ce and Pr) catalysts were prepared and the resulting materials were characterized using N adsorption/desorption, XRD, TEM, NH-TPD, XPS and H-TPR. It was found that the addition of non-stoichiometric metal oxides to Pt/USY leads to the generation of additional acid sites for ammonia chemisorption and that N selectivity improved with increased strong acidity of the bi-functional catalysts. The oxidation state of active Pt could be adjusted by the introduction of non-stoichiometric metal oxides with increased concentrations of oxidized Pt species observed in the order of FeO >CeO >MnO >PrO. High valence platinum surrounded by atomic oxygen that can act as a proton scavenger to drive ammonia activation, inhibiting O dissociation and therefore improve N selectivity. Fe-containing USY zeolite is demonstrated to be a preferred catalyst for the removal of ammonia, due to its high N selectivity and good hydrothermal stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125782DOI Listing

Publication Analysis

Top Keywords

selective catalytic
8
catalytic oxidation
8
non-stoichiometric metal
8
metal oxides
8
ammonia
5
ammonia removal
4
removal selective
4
oxidation influence
4
influence catalyst
4
catalyst structure
4

Similar Publications

High-throughput Experimentation Enables the Development of a Nickel-catalyzed Cyanation Platform for (Hetero)aryl Halides.

Chemistry

January 2025

Boehringer Ingelheim RCV GmbH & Co KG: Boehringer Ingelheim RCV GmbH und Co KG, Chemical Development, GERMANY.

A novel screening platform for the nickel-catalyzed cyanation of (hetero)aryl halides relying on the use of air-stable Ni(COD)DQ at low loading is reported. Through high-throughput experimentation (HTE), various ligand and solvent combinations are systematically explored, allowing the fast identification of suitable conditions. This standardized workflow serves as an excellent starting point for selecting other competent nickel precatalysts and for further optimization of reluctant substrates.

View Article and Find Full Text PDF

4'-Selective alkylation of nucleosides has been recognized as one of the ideal and straightforward approaches to chemically modified nucleosides, but such a transformation has been scarce and less explored. In this Letter, we combine a visible-light-mediated photoredox catalysis and hydrogen atom transfer (HAT) auxiliary to achieve β-C(sp)-H alkylation of alcohol on tetrahydrofurfuryl alcohol scaffolds and exploit it for 4'-selective alkylation of nucleosides. The reaction involves an intramolecular 1,5-HAT process and stereocontrolled Giese addition of the resultant radicals.

View Article and Find Full Text PDF

All-In-One Entropy-Driven DNA Nanomachine for Tumor Cell-Selective Fluorescence/SERS Dual-Mode Imaging of MicroRNA.

Anal Chem

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.

An entropy-driven catalysis (EDC) strategy is appealing for amplified bioimaging of microRNAs in living cells; yet, complex operation procedures, lacking of cell selectivity, and insufficient accuracy hamper its further applications. Here, we introduce an ingenious all-in-one entropy-driven DNA nanomachine (termed as AIO-EDN), which can be triggered by endogenous apurinic/apyrimidinic endonuclease 1 (APE1) to achieve tumor cell-selective dual-mode imaging of microRNA. Compared with the traditional EDC strategy, the integrated design of AIO-EDN achieves autocatalytic signal amplification without extra fuel strands.

View Article and Find Full Text PDF

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Self-powered dual-photoelectrode photoelectrochemical aptasensor amplified by hemin/G-quadruplex-based DNAzyme.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, P.R. China.

A self-powered dual-electrode aptasensor was developed for the detection of tumor marker carcinoembryonic antigen (CEA). The composite BiVO/ZnInS, which is capable of forming a Z-scheme heterojunction, was chosen as the photoanode, and the AuNP/CuBiO complex was chosen as the photocathode in photoelectrochemical (PEC) detection. The experiments showed that the constructed self-powered dual-electrode system had a good photoelectric response to white light, and the photocurrent signal of the photocathode was significantly enhanced under the influence of the photoanode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!