Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tris(4-chlorophenyl)methanol (TCPMOH) is a water contaminant with unknown etiology, but is believed to be a byproduct of DDT manufacturing. It is highly persistent in the environment, and bioaccumulates in marine species. TCPMOH has also been measured in human breast milk, which poses a risk for developing infants. However, almost no toxicity data is currently available. In this study, we investigate the hazard posed by developmental TCPMOH exposures using the zebrafish model (Danio rerio). Zebrafish (Danio rerio) embryos were exposed to 0, 0.1, 0.5, 1, or 5 µM TCPMOH beginning at 24 h post fertilization (hpf). Embryonic mortality and incidence of morphological deformities increased in a concentration-dependent manner with TCPMOH exposure. RNA sequencing assessed changes in gene expression associated with acute (4 hour) exposures to 50 nM TCPMOH. Developmental exposure to TCPMOH decreased expression of ahr2, as well as metabolic enzymes cyp1a1, cyp1b1, cyp1c1, cyp1c2, and cyp2y3 (p<0.05). These findings were concordant with decreased Cyp1a1 induction measured by the ethoxyresorufin-O-deethylase (EROD) assay (p<0.05). Pathways associated with xenobiotic metabolism, lipid metabolism, and transcriptional and translational regulation were decreased. Pathways involved in DNA replication and repair, carbohydrate metabolism, and endocrine function were upregulated. Overall, this study demonstrates that TCPMOH is acutely toxic to zebrafish embryos at elevated concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113121 | PMC |
http://dx.doi.org/10.1016/j.aquatox.2021.105815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!