Sustained IKKβ phosphorylation and NF-κB activation by superoxide-induced peroxynitrite-mediated nitrotyrosine modification of B56γ3 and PP2A inactivation.

Redox Biol

National University Cancer Institute, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore; Integrative Science and Engineering Programme, NUS Graduate School, NUS, Singapore; Faculté de Medicine, University of Paris, Paris, France. Electronic address:

Published: May 2021

Apart from its physiological role in inflammation and immunity, the nuclear factor-kappa B (NF-κB) protein complex has been implicated in tumorigenesis and its progression. Here, we provide evidence that a pro-oxidant milieu is an upstream effector of oncogenic NF-κB signaling. Through pharmacological or genetic inhibition of SOD1, we show that elevated intracellular superoxide (O) mediates sustained IKK phosphorylation, and induces downstream degradation of IκBα, leading to the nuclear localization and transcriptional activation of NF-κB. Mechanistically, we show that such sustained NF-κB signaling is a function of protein phosphatase 2A (PP2A) inactivation brought about by the nitrative modification of its substrate-binding sub-unit B56γ. Importantly, the pro-oxidant driven NF-κB activation enhances the migratory and invasive potential of cancer cells. In summary, our work highlights the critical involvement of O-dependent peroxynitrite production in inhibiting PP2A-mediated dephosphorylation of IKK, thereby facilitating cancers to acquire an invasive phenotype. Given that NF-κB is a key player of chronic inflammation and carcinogenesis, our work unravels a novel synergistic node involving O-driven redox milieu and deregulated PP2A as a potential therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056462PMC
http://dx.doi.org/10.1016/j.redox.2020.101834DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
8
pp2a inactivation
8
nf-κb signaling
8
nf-κb
7
sustained ikkβ
4
ikkβ phosphorylation
4
phosphorylation nf-κb
4
activation superoxide-induced
4
superoxide-induced peroxynitrite-mediated
4
peroxynitrite-mediated nitrotyrosine
4

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Objective: This review synthesizes qualitative research about the experiences of parental caregivers enhancing their children's health after making the decision to not vaccinate their preschool children. This review aims to help health care providers understand the parental work involved in caring for under-vaccinated or unvaccinated children.

Introduction: Much of the current qualitative research literature about parents who are vaccine-hesitant or who decide not to vaccinate their children focuses on parental perceptions about the safety and efficacy of vaccines and decision-making.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!