In this study, two-step surface modification of sawdust using triethanolamine (at 180 °C) and iodomethane (at 42 °C) was performed to produce a novel quaternized biosorbent, TEA-I-SD. The characterization studies revealed significant morphological changes in the sawdust and successful quaternization with a nitrogen content of 5.75%. The highest vanadium removal (96.2%) was achieved at pH 4 (dosage 1 g/L, initial vanadium concentration 19.1 mg/L). Equilibrium was achieved within 8 h of contact time and the adsorption kinetics were well fitted with the pseudo-second-order model. Both film diffusion and intra-particle diffusion contributed to the adsorption process, while the latter was the rate-limiting step. The maximum vanadium adsorption capacity of TEA-I-SD (35.0 mg/g, pH 4) was close to the theoretical value obtained from the Langmuir model. The best fit was achieved with the Redlich-Peterson model, exhibiting a monolayer adsorption phenomenon. Tests with real mine water containing 11 mg/L of vanadium also confirmed its high removal (91.3%, dosage 1 g/L) using TEA-I-SD at pH 4. The TEA-I-SD could be reused three times without significant capacity loss after regeneration, although the desorption efficiency was rather low (synthetic solution: 38.5-40.5% and mine water: 26.2-43.1%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130445DOI Listing

Publication Analysis

Top Keywords

vanadium removal
8
dosage 1 g/l
8
mine water
8
vanadium
5
removal cationized
4
cationized sawdust
4
sawdust produced
4
produced iodomethane
4
iodomethane quaternization
4
quaternization triethanolamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!