Photocatalytic hydrogen evolution over a nickel complex anchoring to thiophene embedded g-CN.

J Colloid Interface Sci

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, PR China. Electronic address:

Published: August 2021

Evolution of hydrogen from water by utilizing solar energy and photocatalysts is one of the most promising ways to solve energy crisis. However, designing a cost-effective and stable photocatalyst without any noble metals is of vital importance for this process. Herein, an extremely active molecular complex cocatalyst NiL(Cl) is successfully designed. After being covalently linked to thiophene-embedded polymeric carbon nitride (TPCN), the hybrid catalyst NiL(Cl)/TPCN exhibits extraordinary H production activity of 95.8 μmol h without Pt (λ ≥ 420 nm), together with a remarkable apparent quantum yield of 6.68% at 450 nm. In such a composite catalyst, the embedded π-electron-rich thiophene-ring not only extends the π-conjugated system to enhance visible light absorption, but also promotes the charge separation through electron-withdrawing effect. It turns out that the CN covalent bonds formed between NiL(Cl) and TPCN skeleton accelerate the transfer of electrons to the Ni active sites. Our finding reveals that the strategy of embedding π-electron-rich compounds to graphitic carbon nitride provides potentials to develop excellent photocatalysts. The strong covalent combination of molecular complexes cocatalyst onto organic semiconductors represents an important step towards designing noble-metal-free photocatalysts with superior activity and high stability for visible light driven hydrogen evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.03.080DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
carbon nitride
8
visible light
8
photocatalytic hydrogen
4
evolution nickel
4
nickel complex
4
complex anchoring
4
anchoring thiophene
4
thiophene embedded
4
embedded g-cn
4

Similar Publications

Thio-ProTide strategy: A novel HS donor-drug conjugate (DDC) alleviates hepatic injury innate lysosomal targeting.

Acta Pharm Sin B

December 2024

Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing 210009, China.

Hydrogen sulfide (HS) is a gas signaling molecule with versatile bioactivities; however, its exploitation for disease treatment appears challenging. This study describes the design and characterization of a novel type of HS donor-drug conjugate (DDC) based on the thio-ProTide scaffold, an evolution of the ProTide strategy successfully used in drug discovery. The new HS DDCs achieved hepatic co-delivery of HS and an anti-fibrotic drug candidate named hydronidone, which synergistically attenuated liver injury and resulted in more sufficient intracellular drug exposure.

View Article and Find Full Text PDF

Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting.

Angew Chem Int Ed Engl

January 2025

Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.

Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.

View Article and Find Full Text PDF

Amorphous Ni(OH) Coated Cu Dendrites with Superaerophobic Interface for Bipolar Hydrogen Production Assisted with Formaldehyde Oxidation.

Small

January 2025

State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

Since formaldehyde oxidation reaction (FOR) can release H, it is attractive to construct a bipolar hydrogen production system consisting of FOR and hydrogen evolution reaction (HER). Although copper-based catalysts have attracted much attention due to their low cost and high FOR activity, the performance enhancement mechanism lacks in-depth investigation. Here, an amorphous-crystalline catalyst of amorphous nickel hydroxide-coated copper dendrites on copper foam (Cu@Ni(OH)/CF) is prepared.

View Article and Find Full Text PDF

Lattice Strain-Modulated Trifunctional CoMoO Polymorph-Based Electrodes for Asymmetric Supercapacitors and Self-Powered Water Splitting.

Small

January 2025

Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China.

Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO within CoMoO@CoO heterostructure via phosphorus doping (P-CoMoO@CoO) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.

View Article and Find Full Text PDF

Ruthenium (Ru)-based electrocatalysts have shown promise for anion exchange membrane water electrolysis (AEMWE) due to their ability to facilitate water dissociation in the hydrogen evolution reaction (HER). However, their performance is limited by strong hydrogen binding, which hinders hydrogen desorption and water re-adsorption. This study reports the development of RuNi nanoalloys supported on MoO, which optimize the hydrogen binding strength at Ru sites through modulation by adjacent Ni atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!