Background: In Arabidopsis thaliana (Arabidopsis), clade IIb lateral organ boundary domain (LBD) 37, 38, and 39 proteins negatively regulate anthocyanin biosynthesis and affect nitrogen responses.
Objective: To investigate the possible role of LBD genes in anthocyanin accumulations among green and purple cabbages (Brassica oleracea var. capitata), we determined sequence variations and expression levels of cabbage homologs of Arabidopsis LBD37, 38, and 39.
Methods: DNA and mRNA sequences of BoLBD37, BoLBD37L (BoLBD37-like), BoLBD38, BoLBD38L (BoLBD38-like), and BoLBD39 gene in cabbage were determined. Allelic variations of BoLBD37L alleles in cabbages, resulting from insertions, were validated by genomic DNA PCR. Gene expressions were examined by semi-quantitative reverse transcription (RT-PCR) or quantitative RT-PCR.
Results: Based on the expression analyses, BoLBD37L with two alleles, BoLBD37L-G and BoLBD37L-P, was selected as a candidate gene important for differential anthocyanin accumulation. BoLBD37L-P contains an 136 base pair insertion in the 2nd exon, producing two splicing variants encoding truncated proteins. Most purple cabbage lines were found to have BoLBD37L-P allele as homozygotes or heterozygotes, and only two out of sixty-four purple cabbages were identified as BoLBD37L-G homozygotes. Expression analyses of anthocyanin biosynthesis genes and their upstream regulators, including BoLBD37L, suggest that truncated proteins encoded by splicing variants of BoLBD37L-P may disrupt the BoLBD37L function as repressor.
Conclusion: Difference in the C-terminal region of BoLBD37L-G and BolBD37L-P may affect the expression of downstream genes, BoMYB114L and BoTT8, resulting in differential anthocyanin accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13258-021-01087-y | DOI Listing |
Plant Physiol Biochem
December 2024
College of Horticulture, Sichuan Agricultural University, 611130, Chengdu, China. Electronic address:
Glutathione (GSH) has a beneficial effect on the response of plants to cadmium (Cd) stress. The physiological and molecular processes by which glutathione influences Cd tolerance in purple flowering stalks (a Brassica vegetable) remain unclear. The aim of this study was to investigate the role of exogenous GSH in alleviating Cd toxicity in purple flowering stalks.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
Rapeseed (Brassica napus L.) possesses substantial economic value as an oil, vegetable, and forage crop, while also exhibiting notable ornamental characteristics. Recent advances in flower colour breeding have significantly enhanced the visual appeal of rapeseed, with anthocyanins identified as the primary contributor to the development of red, purple, and pink flowers.
View Article and Find Full Text PDFJ Sci Food Agric
November 2024
Department of Food Science and Technology, Jinan University, Guangzhou, China.
Background: Folate is an important one-carbon cycle donor involved in the synthesis of purines, thymine, pantothenic acid, serine and glycine. The present study aimed to explore the capacity of Lactiplantibacillus plantarum subsp. plantarum (L.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
In this study, an anthocyanin solution with both high stability and sensitivity was successfully prepared through a blending method, and the optimal ratio was determined. Ultraviolet-visible spectroscopy analysis demonstrated that an increase in the proportion of black bean peel anthocyanins resulted in a deeper color and a more pronounced color change effect. Moreover, the stability of the blended anthocyanins was markedly enhanced with an increase in the proportion of purple cabbage anthocyanins, resulting in a slower decomposition rate under light, temperature, oxidation, and varying pH conditions.
View Article and Find Full Text PDFPlants (Basel)
October 2024
Institute of Vegetables, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
Light quality optimization is a cost-effective method for increasing leafy vegetable quality in plant factories. Light-emitting diodes (LEDs) that enable the precise modulation of light quality were used in this study to examine the effects of red-blue (RB), red-blue-green (RBG), red-blue-purple (RBP), and red-blue-far-red (RBF) lights on the growth, antioxidant capacity, and nitrogen metabolism of Chinese cabbage leaves, while white light served as the control (CK). Results showed that the chlorophyll, carotenoid, vitamin C, amino acid, total flavonoid, and antioxidant levels of Chinese cabbage were all significantly increased under RBP combined light treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!