A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins. | LitMetric

Computational characterizations of GDP-mannose 4,6-dehydratase (NoeL) Rhizobial proteins.

Curr Genet

Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.

Published: October 2021

A growing body of evidence suggests that Nod Factors molecules are the critical structural components in nitrogen fixation. These molecules have been implicated in plant-microbe signaling. Many enzymes involved in Nod factors biosynthesis; however, the enzymes that decorate (modify) nod factor main structure play a vital role. Here, the computational analysis of GDP-mannose 4,6-dehydratase (NoeL) proteins with great impact in modification of nod factor structure in four genomes of agriculturally important rhizobia (Bradyrhizobium, Mesorhizobium, Rhizobium, Sinorhizobium) presented. The NoeL number of amino acids was in the range of 147 (M5AMF5) to 372 (A0A023XWX0, Q89TZ1). The molecular weights were around 41 KDa. The results showed that the strain-specific purification strategy should apply as the pI of the sequences varied significantly (in the range of 5.59 to 9.12). The enzyme sequences and eight 3-dimensional structures predicted with homology modeling and machine learning representing the phylogenetic tree revealed the stability of enzymes in different conditions (Instability and Aliphatic index); however, this stability is also strain-specific. Disulphide bonds were observed in some species; however, the pattern was not detected in all members of the same species. Alpha helix was the dominant secondary structure predicted in all cytoplasmic NoeL. All models were homo-tetramer with acceptable sequence identity, GMEAN and coverage (60, - 1.80, 88, respectively). Additionally, Ramachandran maps showed that more than 94% of residues are in favored regions. We also highlight several key characterizations of NoeL from four rhizobia genomes annotation. These findings provide novel insights into the complexity and diversity of NoeL enzymes among important rhizobia and suggest considering a broader framework of biofilm for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-021-01184-1DOI Listing

Publication Analysis

Top Keywords

gdp-mannose 46-dehydratase
8
46-dehydratase noel
8
nod factors
8
nod factor
8
noel
6
computational characterizations
4
characterizations gdp-mannose
4
noel rhizobial
4
rhizobial proteins
4
proteins growing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!