Management responses to invasive forest insects are facilitated by the use of detection traps ideally baited with species-specific semiochemicals. Emerald ash borer, Agrilus planipennis Fairmaire, is currently invading North American forests, and since its detection in 2002, development of monitoring tools has been a primary research objective. We compared six trapping schemes for A. planipennis over 2 yr at sites in four U.S. states and one Canadian province that represented a range of background A. planipennis densities, canopy coverage, and ash basal area. We also developed a region-wide phenology model. Across all sites and both years, the 10th, 50th, and 90th percentile of adult flight occurred at 428, 587, and 837 accumulated degree-days, respectively, using a base temperature threshold of 10°C and a start date of 1 January. Most trapping schemes captured comparable numbers of beetles with the exception of purple prism traps (USDA APHIS PPQ), which captured significantly fewer adults. Trapping schemes varied in their trap catch across the gradient of ash basal area, although when considering trap catch as a binary response variable, trapping schemes were more likely to detect A. planipennis in areas with a higher ash component. Results could assist managers in optimizing trap selection, placement, and timing of deployment given local weather conditions, forest composition, and A. planipennis density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toab065 | DOI Listing |
Traditional magneto-optical traps are often bulky and complex, which limits their application in portable and scalable technologies. In this study, we propose a method for generating cold atoms using a transmission-grating-based magneto-optical trap (TGMOT). This approach addresses the limitations of traditional magneto-optical traps using a transmission-grating design that simplifies the optical configuration, allowing for efficient atom capture with a single incident beam.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea. Electronic address:
In this study, graphitic carbon nitride (CN) and tungsten trioxide (WO) were successfully incorporated into bromine (Br)-doped graphitic carbon nitride (BCN) using an in-situ hydrothermal method. The photocatalytic efficiency of the resulting WO/Br-doped CN (WBCN) composites for the removal of tetracycline (TC) antibiotics under sunlight irradiation was evaluated. The mass ratio of WO to Br-doped CN (BCN) significantly influenced TC adsorption and photocatalytic degradation, with an optimal ratio of 9:1.
View Article and Find Full Text PDFMolecules
December 2024
School of Physics, Changchun Normal University, Changchun 130032, China.
A highly versatile Z-scheme heterostructure, HoSmSbO/YbDyBiNbO (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual ABO compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of HoSmSbO and YbDyBiNbO, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
The rational design of heterojunction photocatalysts enabling fast transportation and efficient separation of photoexcited charge carriers is the key element in visible light-driven photocatalyst systems. Herein, we develop a unique Z-scheme heterojunction consisting of NiMoO microflowers (NMOF) and ZIF67, referred to as ZINM (composite), for the purpose of antibiotic degradation. ZIF67 was produced by a solution process, whereas NMOF was synthesized via coprecipitation with a glycine surfactant.
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea. Electronic address:
Peroxydisulfate (PDS) activation is a crucial process for wastewater treatment in complicated water matrices. However, it is frequently limited because of poor selectivity, sluggish kinetics, and short lifetime of radicals. Therefore, in this study, an efficient sulfur-doped CN/DyFeO (SCN/DyF) Z-scheme heterostructure catalyst was rationally developed using a simple wet-chemical strategy to photoactivate PDS, which can effectively degrade norfloxacin (NOR; 96.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!