Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak signaling to modulate cell adhesion.

J Biol Chem

The Brown Foundation Institute of Molecular Medicine and Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, Texas, USA. Electronic address:

Published: August 2021

GPR56 is a member of the adhesion G-protein-coupled receptor family shown to play important roles in cell adhesion, brain development, immune function, and tumorigenesis. GPR56 is highly upregulated in colorectal cancer and correlates with poor prognosis. Several studies have shown GPR56 couples to the Gα class of heterotrimeric G-proteins to promote RhoA activation. However, due to its structural complexity and lack of a high-affinity receptor-specific ligand, the complete GPR56 signaling mechanism remains largely unknown. To delineate the activation mechanism and intracellular signaling functions of GPR56, we generated a monoclonal antibody (mAb) that binds with high affinity and specificity to the extracellular domain (ECD). Using deletion mutants, we mapped the mAb binding site to the GAIN domain, which mediates membrane-proximal autoproteolytic cleavage of the ECD. We showed that GPR56 overexpression in 293T cells leads to increased phosphorylation of Src, Fak, and paxillin adhesion proteins and activation of the Gα-RhoA-mediated serum response factor (SRF) pathway. Treatment with the mAb potentiated Src-Fak phosphorylation, RhoA-SRF signaling, and cell adhesion. Consistently, GPR56 knockdown in colorectal cancer cells decreased Src-Fak pathway phosphorylation and cell adhesion. Interestingly, GPR56-mediated activation of Src-Fak phosphorylation occurred independent of RhoA, yet mAb-induced potentiation of RhoA-SRF signaling was Src-dependent. Furthermore, we show that the C-terminal portion of the Serine-Threonine-Proline-rich (STP) region, adjacent to the GAIN domain, was required for Src-Fak activation. However, autoproteolytic cleavage of the ECD was dispensable. These data support a new ECD-dependent mechanism by which GPR56 functions to regulate adhesion through activation of Src-Fak signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7948743PMC
http://dx.doi.org/10.1016/j.jbc.2021.100261DOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
monoclonal antibody
8
src-fak signaling
8
gpr56
8
colorectal cancer
8
gain domain
8
autoproteolytic cleavage
8
cleavage ecd
8
src-fak phosphorylation
8
rhoa-srf signaling
8

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

The role of laminins in cancer pathobiology: a comprehensive review.

J Transl Med

January 2025

Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!