Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ctm.2020.08.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!