Sugar beet is a salt-tolerant crop that can be explored for crop production in degraded saline soils. Seeds of multigerm genotypes LKC-2006 (susceptible) and LKC-HB (tolerant) were grown in 150 mM NaCl, from germination to 60 days after sowing, to decipher the mechanism of salinity tolerance at the vegetative stage. The biomass of the root and leaf were maintained in the tolerant genotype, LKC-HB, under saline conditions. Na /K ratios were similar in roots and leaves of LKC-HB, with lower values under salinity compared to LKC 2006. Infrared temperatures were 0.96°C lower in LKC-HB than in LKC-2006, which helped regulate the leaf water status under stressed conditions. Pulse-chase experiment showed that C photosynthate was preferentially allocated towards the development of new leaves in the tolerant genotype. The sugar profile of leaves and roots showed accumulation of raffinose in leaves of LKC-HB, indicating a plausible role in imparting salinity tolerance by serving as an osmolyte or scavenger. The molecular analysis of the genes responsible for raffinose synthesis revealed an 18-fold increase in the expression of BvRS2 in the tolerant genotype, suggesting its involvement in raffinose synthesis. Our study accentuated that raffinose accumulation in leaves is vital for inducing salinity tolerance and maintenance of shoot dry weight in sugar beet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13420 | DOI Listing |
Arch Rehabil Res Clin Transl
December 2024
Department of Neurology, University of Utah, Salt Lake City, UT.
Exercise is a well-documented, nonpharmacologic treatment for individuals with autonomic dysfunction and associated orthostatic intolerance, such as postural tachycardia syndrome and related disorders. Exercise has been shown to increase blood volume, reverse cardiovascular deconditioning, and improve quality of life. Current first-line standard of care treatment for autonomic dysfunction combines graded approaches to exercise with medications and lifestyle modifications.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
School of Life Sciences and Health, Huzhou College, Huzhou, Zhejiang, China.
subsp. () possesses a -specific uter embrane rotein XAC1347 (OMP) that exerts a role in the expression of the type III secretion system for pathogenicity. In this study, we reported that OMP was required for salt stress tolerance and cell membrane integrity, as well as the expression of the genes for the production of extracellular polysaccharides.
View Article and Find Full Text PDFACS ES T Eng
January 2025
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States.
Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .
View Article and Find Full Text PDFBMC Plant Biol
January 2025
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Earth Sciences, University College London, London, UK.
Argochampsa krebsi is a gavialoid crocodylian from the early Paleogene of North Africa. Based on its recovered phylogenetic relationship with South American species, it has been inferred to have been capable of transoceanic dispersal, but potential anatomical correlates for a marine lifestyle have yet to be identified. Based on CT scans of a mostly complete and well-preserved skull, we reconstruct the endocranial anatomy of Argochampsa and compare it to that of other gavialoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!