Embryos and microscopes share a long, remarkable history and biologists have always been intrigued to watch how embryos develop under the microscope. Here we discuss the advances in microscopy which have greatly influenced our current understanding of embryogenesis. We highlight the evolution of microscopes and the optical technologies that have been instrumental in studying various developmental processes. These imaging modalities provide mechanistic insights into the dynamic cellular and molecular events which drive lineage commitment and morphogenetic changes in the developing embryo. We begin the journey with a brief history of microscopy to study embryos. First, we review the principles and optics of light, fluorescence, confocal, and electron microscopy which have been key techniques for imaging cellular and molecular events during embryonic development. Next, we discuss recent key imaging modalities such as light-sheet microscopy, which are suitable for whole embryo imaging. Further, we highlight imaging techniques like multiphoton and super resolution microscopy for beyond light diffraction limit, high resolution imaging. Lastly, we review some of the scattering-based imaging methods and techniques used for imaging human embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bies.202000238 | DOI Listing |
Med Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Med Phys
January 2025
Department of Engineering Physics, Tsinghua University, Beijing, China.
Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
Background: Tumor size (TS) in pancreatic ductal adenocarcinoma (PDAC) is one of the most important prognostic factors. However, discrepancies between TS on preoperative images (TSi) and pathological specimens (TSp) have been reported. This study aims to evaluate the factors associated with the differences between TSi and TSp.
View Article and Find Full Text PDFOral Radiol
January 2025
Faculty of Dentistry, Department of Oral and Maxillofacial Radiology, Istanbul University, Istanbul, Turkey.
Objectives: This study evaluates the potential of pulp volume/total tooth-volume measurements of canine teeth in relation to chronologic age in patients with cleft lip and palate (CLP). The significance of this study lies in its exploration of the usability of these measurements for age determination in CLP patients, providing a novel perspective to the existing literature.
Methods: Cone beam computed tomography images of 33 patients (16 females, 17 males) with unilateral CLP aged 14-45 years and 33 age- and sex-matched healthy individuals (16 females, 17 males) were retrospectively evaluated.
Behav Res Methods
January 2025
CAP Team, Centre de Recherche en Neurosciences de Lyon - INSERM U1028 - CNRS UMR 5292 - UCBL - UJM, 95 Boulevard Pinel, 69675, Bron, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!