Next-generation sequencing has transformed our knowledge of the genetics of lymphoid malignancies. However, limited experimental systems are available to model the functional effects of these genetic changes and their implications for therapy. The majority of mature B-cell malignancies arise from the germinal center (GC) stage of B-cell differentiation. Here we describe a detailed protocol for the purification and ex vivo expansion of primary, nonmalignant human GC B cells. We present methodology for the high-efficiency transduction of these cells to enable combinatorial expression of putative oncogenes. We also describe alternative approaches for CRISPR-Cas9-mediated deletion of putative tumor suppressors. Mimicking genetic changes commonly found in lymphoid malignancies leads to immortalized growth in vitro, while engraftment into immunodeficient mice generates genetically customized, synthetic models of human lymphoma. The protocol is simple and inexpensive and can be implemented in any laboratory with access to standard cell culture and animal facilities. It can be easily scaled up to enable high-throughput screening and thus provides a versatile platform for the functional interrogation of lymphoma genomic data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-021-00506-4 | DOI Listing |
Genes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFCureus
December 2024
Biomedical Sciences, University of Chicago, Chicago, USA.
Pediatric-type follicular lymphoma (PTFL) is an extremely rare B-cell lymphoma that primarily affects children and young adults, typically in individuals under 25 years old, with a median age of 15 years. Here, we report a rare case of PTFL in a 27-year-old adult male who presented with a slow-growing mass near his left ear. Initial CT scans of the neck revealed two oval-shaped, smooth, well-defined, homogeneously enhancing soft tissue density lesions in the superficial lobe of the left parotid gland.
View Article and Find Full Text PDFFront Immunol
January 2025
Centro de Investigaciones Oncológicas (FUCA), Fundación Cáncer, Ciudad Autónoma de Buenos Aires, Argentina.
VACCIMEL is a therapeutic cancer vaccine composed of four irradiated allogeneic human melanoma cell lines rationally selected to cover a wide range of melanoma tumor-associated antigens (TAA). We previously demonstrated that vaccination in the adjuvant setting prolonged the distant-metastasis-free survival of cutaneous melanoma patients and that T cells reactive to TAA and the patient's private neoantigens increased during treatment. However, immune responses directed to vaccine antigens that may arise from VACCIMEL's somatic mutations and human polymorphisms remain unexplored.
View Article and Find Full Text PDFFront Immunol
January 2025
Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China.
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
January 2025
Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective: To evaluate the efficacy of a microfluidic culture system supplemented with follicular fluid meiosis-activating sterol (FF-MAS) on the maturation of immature oocytes in patients with polycystic ovarian syndrome (PCOS).
Methods: A total of 438 germinal vesicle oocytes from 163 PCOS patients were included. Oocytes were divided into five groups: (1) cultured in static drops without FF-MAS, (2) cultured in static drops with FF-MAS, (3) cultured in a microfluidic device without FF-MAS, (4) cultured in a microfluidic device with FF-MAS for the first 2 h, and (5) cultured in a microfluidic device with FF-MAS for 24 h.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!