Infection of zebrafish larvae with human norovirus and evaluation of the in vivo efficacy of small-molecule inhibitors.

Nat Protoc

KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.

Published: April 2021

We have recently established that human norovirus (HuNoV) replicates efficiently in zebrafish larvae after inoculation of a clinical sample into the yolk, providing a simple and robust in vivo system in which to study HuNoV. In this Protocol Extension, we present a detailed description of virus inoculation by microinjection, subsequent daily monitoring and harvesting of larvae, followed by viral RNA quantification. This protocol can be used to study viral replication of genogroup (G)I and GII HuNoVs in vivo within 3-4 d. Additionally, we describe how to evaluate the in vivo antiviral effect and toxicity of small molecules using HuNoV-infected zebrafish larvae, in multi-well plates and without the need for specific formulations. This constitutes a great advantage for drug discovery efforts, as no specific antivirals or vaccines currently exist to treat or prevent norovirus gastroenteritis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41596-021-00499-0DOI Listing

Publication Analysis

Top Keywords

zebrafish larvae
12
human norovirus
8
infection zebrafish
4
larvae
4
larvae human
4
norovirus evaluation
4
vivo
4
evaluation vivo
4
vivo efficacy
4
efficacy small-molecule
4

Similar Publications

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Fluoride Exposure Modulates Skeletal Development and Mineralization in Zebrafish Larvae.

Environ Toxicol

January 2025

Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.

The presence of high levels of fluoride (F) in groundwater is a major issue worldwide. Although F is essential for healthy teeth and bones, excessive exposure can cause fluorosis or F toxicity. This condition primarily affects the hard tissues due to their high F retention capacity.

View Article and Find Full Text PDF

Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation.

Microsyst Nanoeng

January 2025

Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.

Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.

View Article and Find Full Text PDF

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Exploring daidzein dimethyl ether from Albizzia lebbeck as a novel quorum sensing inhibitor against Pseudomonas aeruginosa: Insights from in vitro and in vivo studies.

Bioorg Chem

January 2025

Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Infections of multidrug-resistant pathogens including Pseudomonas aeruginosa, cause a high risk of mortality in immunocompromised patients and underscore the need for novel natural antibacterial drugs. In this study, common phytochemicals prevalent in fruits and vegetables have been demonstrated for their ability to inhibit quorum sensing (QS) in Pseudomonas aeruginosa PAO1 (PA). Ten compounds were screened virtually by molecular docking, among which, daidzein dimethyl ether originally from Albizzia lebbeck showed the most significant inhibitory effect on the formation of biofilm and the accumulation of virulence factors, including elastase, pyocyanin and rhamnolipid in PA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!