Over 100 countries have set or are considering net-zero emissions or neutrality targets. However, most of the information on emissions neutrality (such as timing) is provided for the global level. Here, we look at national-level neutrality-years based on globally cost-effective 1.5 °C and 2 °C scenarios from integrated assessment models. These results indicate that domestic net zero greenhouse gas and CO emissions in Brazil and the USA are reached a decade earlier than the global average, and in India and Indonesia later than global average. These results depend on choices like the accounting of land-use emissions. The results also show that carbon storage and afforestation capacity, income, share of non-CO emissions, and transport sector emissions affect the variance in projected phase-out years across countries. We further compare these results to an alternative approach, using equity-based rules to establish target years. These results can inform policymakers on net-zero targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8035189 | PMC |
http://dx.doi.org/10.1038/s41467-021-22294-x | DOI Listing |
Nat Commun
January 2025
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.
Here, we design exotic interfaces within a flexible thermoelectric device, incorporating a polyimide substrate, Ti contact layer, Cu electrode, Ti barrier layer, and thermoelectric thin film. The device features 162 pairs of thin-film legs with high room-temperature performance, using p-BiSbTe and n-BiTeSe, with figure-of-merit values of 1.39 and 1.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Classic Formula Modern Chinese Medicine Creation Nanchang 330004, China.
At present, China's traditional Chinese medicine(TCM) industry is developing rapidly with the support of modern science and technology. While promoting economic development and improving national health, it has brought multiple environmental problems. Under the "dual carbon" goals, the ecological fine manufacturing of TCM may become one of the breakthroughs for the TCM industry to practice low-carbon economy.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Economics and Management, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China. Electronic address:
The cost effectiveness of mitigating climate change through afforestation needs to be evaluated for regions with a fragile environment and vulnerable ecosystems. This study develops an integrated geographic-economic-ecological framework to evaluate the cost-effectiveness of afforestation for carbon sequestration in Northwest China. It employs a spatial model of natural factors and a bioeconomic optimization model to identify marginal lands suitable for afforestation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China.
In this study, the effects of using different scrap ratios in a converter on carbon emissions were analyzed based on life cycle assessment (LCA) theory, and the carbon emissions from the converter were evaluated with the use of coke and biochar as heating agents at high scrap ratios. In this industrial experiment, the CO emissions during the converter smelting process decreased with the increase in the scrap steel ratio. For every 1% increase in the scrap steel ratio, the carbon emissions during the steelmaking process decreased by 14.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!