The prevalent view on whether Ras is druggable has gradually changed in the recent decade with the discovery of effective inhibitors binding to cryptic sites unseen in the native structures. Despite the promising advances, therapeutics development toward higher potency and specificity is challenged by the elusive nature of these binding pockets. Here we derive a conformational ensemble of guanosine diphosphate (GDP)-bound inactive Ras by integrating spin relaxation-validated atomistic simulation with NMR chemical shifts and residual dipolar couplings, which provides a quantitative delineation of the intrinsic dynamics up to the microsecond timescale. The experimentally informed ensemble unequivocally demonstrates the preformation of both surface-exposed and buried cryptic sites in Ras•GDP, advocating design of inhibition by targeting the transient druggable conformers that are invisible to conventional experimental methods. The viability of the ensemble-based rational design has been established by retrospective testing of the ability of the Ras•GDP ensemble to identify known ligands from decoys in virtual screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980447 | PMC |
http://dx.doi.org/10.1073/pnas.2024725118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!