Time- and space-resolved excited states at the individual nanoparticle level provide fundamental insights into heterogeneous energy, electron, and heat flow dynamics. Here, we optically excite carbon dots to image electron-phonon dynamics within single dots and nanoscale thermal transport between two dots. We use a scanning tunneling microscope tip as a detector of the optically excited state, via optical blocking of electron tunneling, to record movies of carrier dynamics in the 0.1-500-ps time range. The excited-state electron density migrates from the bulk to molecular-scale (∼1 nm) surface defects, followed by heterogeneous relaxation of individual dots to either long-lived fluorescent states or back to the ground state. We also image the coupling of optical phonons in individual carbon dots with conduction electrons in gold as an ultrafast energy transfer mechanism between two nearby dots. Although individual dots are highly heterogeneous, their averaged dynamics is consistent with previous bulk optical spectroscopy and nanoscale heat transfer studies, revealing the different mechanisms that contribute to the bulk average.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980384PMC
http://dx.doi.org/10.1073/pnas.2023083118DOI Listing

Publication Analysis

Top Keywords

carbon dots
12
dots
8
individual dots
8
ultrafast nanometric
4
nanometric imaging
4
imaging energy
4
energy flow
4
flow single
4
single carbon
4
dots time-
4

Similar Publications

Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.

View Article and Find Full Text PDF

Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.

View Article and Find Full Text PDF

A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.

View Article and Find Full Text PDF

We report a green approach to prepare carbon dots (CDs) with fresh tomatoes as carbon sources and amino acids as dopants (ACDs) by a microwave assisted method. The synthesised CDs were analysed by UV-visible absorption spectroscopy, photoluminescence spectroscopy, high resolution transmission electron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photo electron spectroscopy. An MTT assay was used to evaluate the cytotoxicity of CDs toward L929 cells and found that CDs exhibit low cytotoxicity.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!