Low-temperature-high-magnetic field magnetic force microscopy studies on colossal magnetoresistance material SmCaSrMnOhave been carried out. These measurements provide real-space visualization of antiferromagnetic-ferromagnetic (AFM-FM) transition on sub-micron length scale and explain the presence of AFM-FM transition in the temperature-dependent magnetization measurements, but the absence of corresponding metal-insulator transition in temperature-dependent resistivity measurements at the low magnetic field. Distribution of transition temperature over the scanned area indicates towards the quench disorder broadening of the first-order magnetic phase transition. It shows that the length scale of chemical inhomogeneity extends over several micrometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/abf6a7 | DOI Listing |
Dalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
Vanadium-based Na superionic conductor (NASICON) type materials (NaVM(PO), M = transition metals) have attracted extensive attention when used as sodium-ion batteries (SIBs) cathodes due to their stable structures and large Na diffusion channels. However, the materials have poor electrical conductivity and mediocre energy density, which hinder their practical applications. Activating the V/V redox couple (V/V≈4.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Physics, University of Ulsan, Ulsan, 44619, South Korea.
Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.
View Article and Find Full Text PDFSci Rep
January 2025
School of Technology, Beijing Forestry University, Beijing, 100083, China.
The magnetically suspended flywheel energy storage system (MS-FESS) is an energy storage equipment that accomplishes the bidirectional transfer between electric energy and kinetic energy, and it is widely used as the power conversion unit in the uninterrupted power supply (UPS) system. First, the structure of the FESS-UPS system is introduced, and the working principles at different working states are described. Furthermore, the control strategy of the FESS-UPS is developed, and the switch oscillation of the FESS-UPS system between the charging and discharging states is analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!