In this work, through thegrowth of MnOnanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnOnanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu(PO)·3HO). Then a new strategy for cholesterol determination is developed based on MOF@MnOnanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield HO, which further reduces MnOnanosheets into Mn. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360M. The limit of detection (LOD) of cholesterol is 1.57M. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abf692DOI Listing

Publication Analysis

Top Keywords

hybrid nanoflowers
36
cholesterol
9
hybrid
9
nanoflowers
9
mof@mnonanocomposites prepared
8
nanoflowers cholesterol
8
cholesterol determination
8
activity hybrid
8
high level
8
prepared usingmethod
4

Similar Publications

In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.

View Article and Find Full Text PDF

3d-5d Orbital Hybridization in Nanoflower-Like High-Entropy Alloy for Highly Efficient Overall Water Splitting at High Current Density.

Small

January 2025

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China.

Exploring highlyefficient electrocatalysts for overall water splitting is a challenging butnecessary task for development of green and renewable energy. Herein, PtIrFeCoNi high-entropy alloy nanoflowers (HEA NFs) withstrong 3d-5d orbital hybridization were fabricated to achieve highly efficientoverall water splitting at high current density. The PtIrFeCoNi HEA NFs achieved a 57.

View Article and Find Full Text PDF

Protein Based Hybrid Materials of Metal Phosphate Nanoflowers and Gels for Water Remediation: Perspectives and Prospects.

Chem Asian J

January 2025

Department of Chemistry, School of Engineering and Sciences, SRM University AP, Neerukonda (P.O.), Guntur (dist), 522 240, Andhra Pradesh, India.

Water pollution is a critical environmental issue affecting ecosystems and human health worldwide. Contaminants such as heavy metals, dyes, antibiotics, and microplastics enter water bodies from the disposals of industrial, agricultural, and domestic waste. The development of new and advanced technologies for addressing water remediation has turned out to be a dire need.

View Article and Find Full Text PDF

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

A DNA tweezer-actuated nanozyme-enzyme hybrid nanoreactor for pesticide detection.

Biosens Bioelectron

March 2025

State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China. Electronic address:

The construction of a nanozyme-enzyme hybrid cascade system is an effective protocol to optimize the performance of biosensors. Yet, the integration has limitations due to the lack of harmonious collaboration between nanozyme and enzyme. Herein, we have constructed an efficient enzymatic cascade system by utilizing the base complementary pairing and the targeting capability of DNA tweezers to combine DNA-regulated copper nanoflowers (CuNFs) with acetylcholinesterase (AChE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!