Field application of liquid animal manure (slurry) is a significant source of ammonia (NH) emission to the atmosphere. It is well supported by theory and previous studies that air temperature effects NH flux from field applied slurry. The objectives of this study was to statistically model the response of temperature at the time of application on cumulative NH emission. Data from 19 experiments measured with the same system of dynamic chambers and online measurements were included. A generalized additive model allowing to represent non-linear functional dependences of the emission on the temperature revealed that a positive response of the cumulative NH emission on the temperature at the time of application up to a temperature of approximately 14 °C. Above that, the temperature effect is insignificant. Average temperature over the measuring period was not found to carry any additional information on the cumulative NH emission. The lack of emission response on temperature above a certain point is assumed to be caused by drying out of the slurry and possible crust formation. This effect is hypothesized to create a physical barrier that reduce diffusion of NH to the soil surface, thereby lowering the emission rate. Furthermore, the effect of the interaction between soil type and application technique and the effect of dry matter content of the slurry was derived from the model, and found to be significant on cumulative NH emission predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117055DOI Listing

Publication Analysis

Top Keywords

cumulative emission
16
temperature
9
emission
9
air temperature
8
ammonia emission
8
response temperature
8
temperature time
8
time application
8
emission temperature
8
application
5

Similar Publications

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

In situ remediation of oil-contaminated soils by ozonation: Experimental study and numerical modeling.

Chemosphere

January 2025

Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:

The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.

View Article and Find Full Text PDF

In this study, we assessed the utility of ultrasonography in monitoring the chemotherapeutic effects on primary thyroid lymphoma (PTL). This retrospective analysis included 17 patients with PTL who received chemotherapy from 2012 to 2022. The sonographic features were examined pre- and post-treatment using ultrasound (US) to monitor the treatment response at the first to second, third to fourth, and end cycles of chemotherapy and follow-up, and progression-free survival (PFS) and overall survival (OS) were analyzed.

View Article and Find Full Text PDF

Subsidies, Standards, or Both? Trade-Offs among Policies for 100% Zero-Emissions Vehicle Sales.

Environ Sci Technol

January 2025

School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.

Numerous regions are committed to reaching 100% light-duty zero-emissions vehicle (ZEV) sales by 2035 or earlier. For the case of Canada, we explore two policy pathways toward this goal: (i) a stringent ZEV sales standard (or mandate) and (ii) a purchase subsidy-based strategy (of three different durations). The AUtomaker-consumer Model (AUM) is used to compare policy impacts on ZEV sales, GHG mitigation, vehicle markups and prices, and automaker profits from 2023 to 2035.

View Article and Find Full Text PDF

Impacts of different intensities of commercial Sphagnum moss extraction on CO fluxes in a northern Patagonia peatland.

Sci Total Environ

January 2025

Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.

Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!