Psychosocial issues in isolated and confined extreme environments.

Neurosci Biobehav Rev

Department of Psychology, The University of British Columbia, Vancouver, BC, Canada.

Published: July 2021

PALINKAS, L.A., and P. SUEDFELD. Psychosocial Issues in Isolated and Confined Extreme Environments. NEUROSCI BIOBEHAV REV (1) XXX-XXX, 2020. Psychosocial elements of behavior and performance will significantly impact the outcomes of long duration missions in space, ranging from individual and team decrements to positive benefits associated with successful adaptation. This paper reviews our current understanding of the individual, interpersonal and organizational issues related to living and working in isolated and confined extreme (ICE) environments. Individual issues include changes in emotions and cognitive performance; seasonal syndromes linked to changes in the physical environment; and positive effects of adapting to ICE environments. Interpersonal issues include processes of crew cohesion, tension and conflict; interpersonal relations and social support; the impact of group diversity and leadership styles on small group dynamics; and crew-mission control interactions. Organizational issues include the influence of organizational culture and mission duration on individual and group performance, crew autonomy, and managerial requirements for long duration missions. Improved screening and selection, leadership, coping and interpersonal skills training, and organizational change are key elements to optimizing adjustment to the environment and preventing decrements during and after long duration missions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2021.03.032DOI Listing

Publication Analysis

Top Keywords

isolated confined
12
confined extreme
12
long duration
12
duration missions
12
issues include
12
psychosocial issues
8
issues isolated
8
extreme environments
8
organizational issues
8
ice environments
8

Similar Publications

Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.

View Article and Find Full Text PDF

Exploiting cost-effective hydrogen evolution reaction (HER) catalysts is crucial for sustainable hydrogen production. However, currently reported nanocatalysts usually cannot simultaneously sustain high catalytic activity and long-term durability. Here, we report the efficient synthesis and activity tailoring of a chainmail catalyst, isolated platinum atom anchored tungsten carbide nanocrystals encapsulated inside carbon nanotubes (Pt/WC@CNTs), by confined flash Joule heating technique.

View Article and Find Full Text PDF

Mobile genetic elements are key to the global emergence of antibiotic resistance. We successfully reconstructed the complete bacterial genome and plasmid assemblies of isolates sharing the same carbapenemase gene to understand evolution over time in six confined hospital drains over five years. From 82 isolates we identified 14 unique strains from 10 species with 113 carrying plasmids across 16 distinct replicon types.

View Article and Find Full Text PDF

Isolation of Viral Biofilms From HTLV-1 Chronically Infected T Cells and Integrity Analysis.

Bio Protoc

December 2024

Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.

The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.

View Article and Find Full Text PDF

Clinical signs of respiratory disease are common in Lao goats. To identify the causative agents involved in this clinical syndrome, a matched case-control study was conducted across 70 smallholder goat holdings in Savannakhet province. Fifty paired nasal swab samples were collected from goats with respiratory signs (cases) and unaffected (control) goats from 27 goat holdings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!