A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sequence and structure-based method to predict diacylglycerol lipases in protein sequence. | LitMetric

Sequence and structure-based method to predict diacylglycerol lipases in protein sequence.

Int J Biol Macromol

School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China. Electronic address:

Published: July 2021

Lipase enzymes play a central role in biotechnology and the food industry. Diacylglyceride lipases (DAG) have received considerable attention due to their physiological significance and potential industrial usage. However, compared to the wide application of triacylglycerol (TAG) lipases, DAG lipases have a limited application due to their low thermostability and specific activity. The molecular basis of substrate specificity of DAG lipases remains elusive, making structure-guided engineering of TAG to DAG lipase difficult. Besides, the number of available DAG lipases is limited compared to TAG lipases. In the current study, we identified structural consensus motifs of DAG lipases that contribute to their DAG specificity on a structural comparison of DAG and TAG lipases. To find potential DAG lipases, sequence motifs and predicted secondary structures were used to screen millions of protein sequences and predict new DAG lipases. In total, 83 new putative DAG lipases were identified. The predicted DAG lipases were validated by expression of randomly chosen putative DAG lipases followed by functional assay for their DAG and TAG specific activity. The reported method is efficient and cost-effective for discovering new DAG lipases used in the food industry after the required characterization to meet potential application needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.04.011DOI Listing

Publication Analysis

Top Keywords

dag lipases
40
lipases
15
dag
15
tag lipases
12
food industry
8
lipases dag
8
lipases limited
8
specific activity
8
dag tag
8
putative dag
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!