Poikiloderma with neutropenia (PN), is a rare autosomal recessive condition with many associated complications and manifestations. Here we present a patient with confirmed PN who is of one-quarter Chucktaw or Cherokee heritage with no known descent from the Navajo tribe. The patient's condition was complicated by chronic bilateral lower limb cellulitis and associated osteomyelitis which was unresponsive to extensive antibiotic regimens. Subsequent treatment with hyperbaric oxygen therapy (HBOT) was successful. To date, no author has reported on the treatment of recurrent cellulitis using HBOT in this patient population. Based on our experience, HBOT should be considered in patients with PN.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62204DOI Listing

Publication Analysis

Top Keywords

hyperbaric oxygen
8
recurrent cellulitis
8
poikiloderma neutropenia
8
oxygen management
4
management recurrent
4
cellulitis poikiloderma
4
neutropenia poikiloderma
4
neutropenia rare
4
rare autosomal
4
autosomal recessive
4

Similar Publications

Introduction: Continued interest in the optimization of recovery in aesthetics has led to the exploration of adjunctive therapies. Hyperbaric oxygen therapy (HBOT) serves as one such therapy that may have an impact in this field. HBOT is hypothesized to improve ischemia, reduce swelling, and minimize secondary hypoxic tissue damage.

View Article and Find Full Text PDF

Background: Autologous breast reconstruction provides substantial benefits in terms of aesthetics and longevity. However, the risk of flap necrosis poses potential challenges to patients' appearance and psychological well-being, while also escalating health care costs. Consequently, examining the risk factors, assessment techniques, and therapeutic approaches for flap necrosis is critically important.

View Article and Find Full Text PDF

Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality?

J Cardiovasc Dev Dis

December 2024

Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.

Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health.

View Article and Find Full Text PDF

Background: To explore the mechanism of hyperbaric oxygen (HBO) intervention on acute lung injury secondary to snake venom poisoning and provide more toxicological and clinical evidence for venom poisoning.

Methods: Male Kunming mice (n = 96) were randomly divided into four groups: the control group which was not given any interventional treatments, venom group in which each mouse was injected with venom (1 mg/kg) through the tail vein, antivenom group in which each mouse was injected with anti- venom immediately after the model was successfully established, and HBO+antivenom group in which each mouse was given HBO treatment at 1 h, 5 h, 11 h and 23 h following the injection of antivenom. Lung tissues of mice were obtained and processed for the detection of the lung coefficient, the levels of inflammatory factors such as interleukin (IL)-6, IL-10 and IL-17, and the protein expression of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγt) and forkhead box P3 (FOXP3).

View Article and Find Full Text PDF

Repeated hyperbaric oxygen exposure accelerates fatigue and impairs SR-calcium release in mice.

J Appl Physiol (1985)

December 2024

Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.

Breathing hyperoxic gas is common in diving and accelerates fatigue after prolonged and repeated exposure. The mechanism(s) remain unknown but may be related to increased oxidants that interfere with skeletal muscle calcium trafficking or impair aerobic ATP production. To determine these possibilities, C57BL/6J mice were exposed to hyperbaric oxygen (HBO) for 4-h on three consecutive days or remained in room air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!