A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VMAN: A Virtual Mainstay Alignment Network for Transductive Zero-Shot Learning. | LitMetric

Transductive zero-shot learning (TZSL) extends conventional ZSL by leveraging (unlabeled) unseen images for model training. A typical method for ZSL involves learning embedding weights from the feature space to the semantic space. However, the learned weights in most existing methods are dominated by seen images, and can thus not be adapted to unseen images very well. In this paper, to align the (embedding) weights for better knowledge transfer between seen/unseen classes, we propose the virtual mainstay alignment network (VMAN), which is tailored for the transductive ZSL task. Specifically, VMAN is casted as a tied encoder-decoder net, thus only one linear mapping weights need to be learned. To explicitly learn the weights in VMAN, for the first time in ZSL, we propose to generate virtual mainstay (VM) samples for each seen class, which serve as new training data and can prevent the weights from being shifted to seen images, to some extent. Moreover, a weighted reconstruction scheme is proposed and incorporated into the model training phase, in both the semantic/feature spaces. In this way, the manifold relationships of the VM samples are well preserved. To further align the weights to adapt to more unseen images, a novel instance-category matching regularization is proposed for model re-training. VMAN is thus modeled as a nested minimization problem and is solved by a Taylor approximate optimization paradigm. In comprehensive evaluations on four benchmark datasets, VMAN achieves superior performances under the (Generalized) TZSL setting.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2021.3070231DOI Listing

Publication Analysis

Top Keywords

virtual mainstay
12
unseen images
12
mainstay alignment
8
alignment network
8
transductive zero-shot
8
zero-shot learning
8
model training
8
embedding weights
8
weights
7
vman
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!