Objective: Frequency-domain diffuse optical spectroscopic imaging (FD-DOS) is a non-invasive method for measuring absolute concentrations of tissue chromophores such as oxy- and deoxy-hemoglobin in vivo. The utility of FD-DOS for clinical applications such as monitoring chemotherapy response in breast cancer has previously been demonstrated, but challenges for further clinical translation, such as slow acquisition speed and lack of user feedback, remain. Here, we propose a new high speed FD-DOS instrument that allows users to freely acquire measurements over the tissue surface, and is capable of rapidly imaging large volumes of tissue.

Methods: We utilize 3D monocular probe tracking combined with custom digital FD-DOS hardware and a high-speed data processing pipeline for the instrument. Results are displayed during scanning over the surface of the sample using a probabilistic Monte Carlo light propagation model.

Results: We show this instrument can measure absorption and scattering coefficients with an error of 7% and 1% respectively, with 0.7 mm positional accuracy. We demonstrate the equivalence of our visualization methodology with a standard interpolation approach, and demonstrate two proof-of-concept in vivo results showing superficial vasculature in the human forearm and surface contrast in a healthy human breast.

Conclusion: Our new FD-DOS system is able to compute chromophore concentrations in real-time (1.5 Hz) in vivo.

Significance: This method has the potential to improve the quality of FD-DOS image scans while reducing measurement times for a variety of clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612633PMC
http://dx.doi.org/10.1109/TBME.2021.3072036DOI Listing

Publication Analysis

Top Keywords

probe tracking
8
frequency-domain diffuse
8
diffuse optical
8
clinical applications
8
fd-dos
6
real-time handheld
4
handheld probe
4
tracking image
4
image formation
4
formation digital
4

Similar Publications

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an ensemble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory of individual tracers is ideal for homogeneous materials that do not interact with the particles. By contrast, the characterization of heterogeneous, micro-structured materials or those where particles interact directly with the medium requires a two-particle analysis that characterizes correlations between the trajectories of distinct particle pairs.

View Article and Find Full Text PDF

Validation of Muscle Ultrasound Speckle Tracking and the Effect of Nordic Hamstring Exercise on Biceps Femoris Displacement.

Ultrasound Med Biol

January 2025

School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan ROC; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan ROC. Electronic address:

Objective: This study aimed to validate the ultrasound speckle tracking (UST) algorithm, determine the optimal probe location by comparing normalized cross-correlation (NCC) values of muscle displacement at two locations (proximal vs. middle) of the biceps femoris long head (BFlh) using the UST, and investigate the effects of Nordic hamstring curl exercise (NHE) training on BFlh displacement.

Methods: UST efficacy was verified with ex vivo uniaxial testing of porcine leg muscles.

View Article and Find Full Text PDF

Target-induced proximity ligation triggers polymerase chain reaction for subset tracing of small extracellular vesicles.

Talanta

January 2025

Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Department of Neurology, Ningbo Medical Center Li Huili Hospital, The Affiliated Li Huili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China; Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo City, Zhejiang Province, 315040, China. Electronic address:

The considerable abundance and remarkable stability of sEVs provide substantial benefits for diagnosing Alzheimer's disease. Therefore, precise tracking subtypes of small extracellular vesicles (sEVs) is crucial for screening novel diagnostic biomarkers and developing therapeutic technologies. We propose a three-target recognition-mediated proximity ligation assay for the precise identification of sEV subtypes utilizing three specifically designed probes: one for the exosomal surface protein CD63 recognition, one for fixing the biolipid layer, and the third for the identification of distinctive protein associated with a specific subtype of sEVs (L1CAM positive sEVs).

View Article and Find Full Text PDF

Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!