Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Garlic () is a widely consumed bulbous crop both worldwide and in Russia. About 200,000 tons of garlic is produced in Russia annually (https://rosstat.gov.ru/). Significant pre- and post-harvest losses of garlic regularly occur due to (Taylor et al., 2013). Since September 2018, rotting has been observed in Russia during garlic bulb storage (data of the Federal Scientific Vegetable Center, FSVC, Moscow Region). The outer bulb surface looked healthy, but underneath the integumentary scales, the cloves had light brown and brown spots. When grown, diseased plants were characterized by root and bulb disruption and leaf drying; for some cultivars, up to 100% of plants died. In January 2020, cv. Strelets and Dubkovsky bulbs, collected in July 2019, with rot symptoms, were taken from the FSVC storage. Necrotic clove tissue fragments (0.2-0.5 cm) were cut, sanitized with 70% ethanol for 3 min, rinsed with sterile water, and incubated on potato dextrose agar (PDA) with 1 mg/ml ampicillin at 22°C in the dark. Four single-spore cultures were obtained from four diseased bulbs. After 6 days of incubation, the isolates produced abundant aerial white mycelia and acquired a purple pigmentation. The hyphae were hyaline with septation. All isolates (Dubkovsky, Dubkovsky 2, Strelets, and Strelets 2) produced numerous oval unicellular microconidia without septa, 4.1 to 11.6 × 1.3 to 3.4 µm (n = 50) and very few macroconidia with 3-4 septa (21 to 26 × 3 to 4 µm (n = 30)), narrowed at both ends. The cultural and conidial characteristics of the isolates corresponded to species (Leslie and Summerell 2006). To determine the species, DNA was extracted from four isolates, and the internal transcribed spacer (ITS), and genes of translation elongation factor 1α () and subunits 1 and 2 of DNA-directed RNA polymerase II ( and ) were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1/EF2 (O'Donnell et al. 1998a), RPB1-F5/RPB1-R8 (O'Donnell et al. 2010) and fRPB2-5F/fRPB2-7cR (Liu et al. 1999). The obtained sequences were identical for all four isolates. The isolate Strelets sequences were deposited in NCBI GenBank (MW149129 (ITS), MW161161 (), MW413302 () and MW413303 ()); their analysis in MLST (http://fusarium.mycobank.org) showed 98.8-99.8% similarity to (NRRL 13582, 13598 and others), which is part of the complex (O'Donnell et al. 1998b). The test on pathogenicity was performed two times according to (Leyronas et al. 2018). For this, three replicates of 10 cloves (cv. Strelets) were soaked in a conidial suspension (~10 conidia/ml; Strelets isolate) for 24 h. Ten control cloves were soaked in sterile water. The cloves were incubated on Petri dishes (5 cloves on a dish; on filter paper wettened with sterile water) in the dark at 23°C. After 5 days, brown lesions and white mycelium developed on the surface of the treated cloves. The taxonomic status of the fungus isolated from necrotic tissue was determined as according to the ITS, , and analysis. Garlic basal and bulb rot is known to be caused by f. sp. and (Snowdon 1990). This study is the first report of causing rot of garlic bulbs during storage in Russia. produces a variety of mycotoxins during bulb infestation, and our findings are important for diagnosing a disease and the use of garlic crop in culinary and medicine. Funding The reported study was funded by Russian Foundation for Basic Research, project number 20-316-70009. References: Leslie, J. F., and Summerell, B. A. 2006. Page 224 in: The Fusarium Laboratory Manual. Blackwell, Oxford, UK. https://doi.org/10.1002/9780470278376 Leyronas, C., et al. 2018. Plant Dis. 102:2658 https://doi.org/10.1094/PDIS-06-18-0962-PDN Liu, Y.J. et al. 1999. Mol. Biol. Evol. 16: 1799 https://doi.org/10.1093/oxfordjournals.molbev.a026092 O'Donnell, K, et al. 1998a. Proc Natl Acad Sci USA. 95(5):2044. https://doi.org/10.1073/pnas.95.5.2044. O'Donnell, et al. 1998b. Mycologia 90:465 O'Donnell, K., et al. 2010. J. Clin. Microbiol., 48: 3708 https://doi.org/10.1128/JCM.00989-10 Snowdon, A. L. Pages 250-252 in: A Color Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables. Vol. 1. 1990. Wolfe Scientific, London. Taylor, A, et al. 2013. Plant Pathol. 62:103. https://doi.org/10.1111/j.1365-3059.2012.02624.x White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-12-20-2743-PDN | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!