causes root and stem diseases on soybean and sugar beet, and fungicides are commonly used to manage these diseases. Quinone outside inhibitor (QoI) fungicides (pyraclostrobin and azoxystrobin) have been used for in-furrow and postemergence application since 2000. Succinate dehydrogenase inhibitor (SDHI) fungicides (sedaxane, penthiopyrad, and fluxapyroxad) became popular seed treatments after their registration in Minnesota and North Dakota between 2012 and 2016. Periodic monitoring of sensitivity to these fungicides in anastomosis group (AG) 2-2 is important to detect potential shifts in sensitivity over time. AG 2-2 isolates ( = 35) collected from soybean and sugar beet in Minnesota and North Dakota were evaluated in vitro for sensitivity. Isolates were considered as baseline or nonbaseline for the above-mentioned fungicides based on previous potential exposure. The effective concentration (EC) required to suppress radial fungal growth by 50% was determined. The mean EC values for sedaxane, penthiopyrad, fluxapyroxad, and pyraclostrobin were 0.1, 0.15, 0.16, and 0.25 (µg ml), respectively. The mean EC value for azoxystrobin for 22 isolates was 0.76 to 1.56 µg ml; and EC could not be determined for 13 isolates because of <50% inhibition at the highest concentrations used. The EC values for the QoI fungicides did not differ significantly between baseline and nonbaseline isolates. EC values for SDHI fungicides were significantly higher for isolates collected from soybean than from sugar beet, and isolates collected from both crops had similar EC values for pyraclostrobin. All SDHI fungicides and pyraclostrobin effectively suppressed isolates from soybean and sugar beet at low concentrations in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-12-20-2680-RE | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemistry, Herbert H. Lehman College, City University of New York, New York, NY 10468, USA.
Breast cancer treatment has advanced significantly, particularly for estrogen receptor-positive (ER+) tumors. Tamoxifen, an estrogen antagonist, is widely used; however, approximately 40% of patients develop resistance. Recent studies indicate that microRNAs, especially miR-155, play a critical role in this resistance.
View Article and Find Full Text PDFMicroorganisms
December 2024
Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
This study aimed to improve palm kernel cake by reducing anti-nutritional factors with enzymes and enhancing its nutritional value through microbial fermentation. It also examined the effects of these treatments on palm kernel cake in broiler chicken diets. Palm kernel cake was hydrolyzed using xylanase and mannanase under various conditions.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
School of Life Sciences, Anhui University, Hefei 230000, Anhui, China.
The high content of sucrose and raffinose reduces the prebiotic value of soybean oligosaccharides. Fructan sucrases can catalyze the conversion of sucrose and raffinose to high-value products such as fructooligosaccharides and melibiose. To obtain a fructan sucrase that can efficiently convert soybean oligosaccharides, we first mined the fructan sucrase gene from microorganisms in the coastal areas of Xisha Islands and Bohai Bay and then characterized the enzymatic and catalytic properties of the enzyme.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!