The potential antitumor effects of jacalin, the plant lectin that specifically recognizes the tumor-associated Thomsen-Friedenreich antigen has been extensively studied. We had earlier reported jacalin to be mitogenic to K562, the Bcr-Abl expressing erythroleukemia cell line. The dearth of studies highlighting the proliferative effects of jacalin and other lectins motivated us to unveil the mechanism underlying the mitogenic effects of jacalin. Caveolin-1 (cav-1) is an integral membrane protein, known to play a crucial role in cell signaling, lipid transport, and membrane trafficking. The role of cav-1 in tumorigenesis is considered to be controversial as it can suppress as well as promote tumor growth, depending on the cellular context. In the present study, we propose that cav-1 plays the central role in the mitogenic effects of jacalin on the K562 cells. In accordance, the mRNA, as well as protein expression of cav-1 was found to be upregulated in the jacalin-treated K562 cells as compared to the untreated control. Further, jacalin stimulation also increased the phosphorylation of ERK and Akt. The rationale that leads to the initial conjecture about cav-1 was that the sequence of jacalin possesses a cav-1-binding site.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-021-09998-4DOI Listing

Publication Analysis

Top Keywords

effects jacalin
16
jacalin
8
plant lectin
8
mitogenic effects
8
k562 cells
8
cav-1
5
increased erk
4
erk phosphorylation
4
phosphorylation caveolin-1
4
caveolin-1 expression
4

Similar Publications

Jacalin Attenuates Colitis-Associated Colorectal Carcinogenesis by Inhibiting Tumor Cell Proliferation and Intestinal Inflammation.

Inflamm Bowel Dis

January 2025

Graduate Program in Basic and Applied Immunology, Biochemistry and Immunology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14040-902, Brazil.

Background: Colorectal cancer (CRC) remains a significant cause of morbidity and mortality worldwide. In patients with inflammatory bowel disease, who have twice the risk of developing CRC, chronic inflammation has been recognized to contribute to colitis-associated cancer (CAC) development. Jacalin, a lectin extracted from jackfruit seeds, has been shown to recognize altered glycosylation and to exert antiproliferative and cytotoxic effects in CRC.

View Article and Find Full Text PDF

Unlocking the wound-healing potential: An integrative in silico proteomics and in vivo analysis of Tacorin, a bioactive protein fraction from Ananas comosus (L.) Merr. Stem.

Biochim Biophys Acta Proteins Proteom

January 2025

Dexa Laboratories of Biomolecular Sciences, PT Dexa Medica, Jababeka Industrial Estate II, Jl. Industri Selatan V Blok PP No. 7 Cikarang, 17550, Indonesia; Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, South Jakarta 12930, Indonesia. Electronic address:

Tacorin, a bioactive protein fraction derived from pineapple stem (Ananas comosus), has emerged as a promising therapeutic agent for wound healing. This study employs an integrated approach, combining in silico proteomics and in vivo investigations, to unravel the molecular mechanisms underlying Tacorin's wound healing properties. In the domain of in silico proteomics, the composition of Tacorin is elucidated through LC/MS-MS protein sequencing, revealing ananain (23.

View Article and Find Full Text PDF

Entropy-enthalpy compensation in the methyl 5-thio-α-d-galactopyranoside-Jacalin interaction.

Carbohydr Res

January 2025

Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, United States. Electronic address:

Methyl 5-thio-α-d-galactopyranoside was synthesized and found to have a more favorable enthalpy of binding to Jacalin than methyl α-d-galactopyranoside, which is attributed to the greater magnitude of sulfur-π over oxygen-π interactions. This increase in enthalpy, however, was offset by a less favorable entropy of binding, arising from the need to constrain the more flexible thiosugar, thereby highlighting the complexities inherent in the design of effective sugar mimetics.

View Article and Find Full Text PDF

Marker-Assisted Selection of Jacalin-Related Lectin Genes and Derived from Sea Rice 86 Enhances Salt Tolerance in Rice.

Int J Mol Sci

October 2024

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha 410081, China.

Soil salinization limits rice growth and is an important restriction on grain yield. Jacalin-related lectins are involved in multiple stress responses, but their role in salt stress responses and use as molecular markers for salt tolerance remain poorly understood. Salt stress treatments and RT-qPCR analyses of Sea Rice 86 (SR86), 9311, and Nipponbare (Nip) showed that and enhanced tolerance of salt stress in SR86.

View Article and Find Full Text PDF

The sunflower jacalin Helja: biological and structural insights of its antifungal activity against Candida albicans.

Glycobiology

July 2024

Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina.

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!