Breaking Cassie's Law for Condensation in a Nanopatterned Slit.

Phys Rev Lett

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Department of Molecular Modelling, 165 02 Prague, Czech Republic.

Published: March 2021

We study the phase transitions of a fluid confined in a capillary slit made from two adjacent walls, each of which are a periodic composite of stripes of two different materials. For wide slits the capillary condensation occurs at a pressure which is described accurately by a combination of the Kelvin equation and the Cassie law for an averaged contact angle. However, for narrow slits the condensation occurs in two steps involving an intermediate bridging phase, with the corresponding pressures described by two new Kelvin equations. These are characterised by different contact angles due to interfacial pinning, with one larger and one smaller than the Cassie angle. We determine the triple point and predict two types of dispersion force induced Derjaguin-like corrections due to mesoscopic volume reduction and the singular free-energy contribution from nanodroplets and bubbles. We test these predictions using a fully microscopic density functional model which confirms their validity even for molecularly narrow slits. Analogous mesoscopic corrections are also predicted for two-dimensional systems arising from thermally induced interfacial wandering.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.125701DOI Listing

Publication Analysis

Top Keywords

condensation occurs
8
narrow slits
8
breaking cassie's
4
cassie's law
4
law condensation
4
condensation nanopatterned
4
nanopatterned slit
4
slit study
4
study phase
4
phase transitions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!