Laser induced electronic excitations that spontaneously emit photons and decay directly to the initial ground state ("optical cycling transitions") are used in quantum information and precision measurement for state initialization and readout. To extend this primarily atomic technique to large, organic compounds, we theoretically investigate optical cycling of alkaline earth phenoxides and their functionalized derivatives. We find that optical cycle leakage due to wave function mismatch is low in these species, and can be further suppressed by using chemical substitution to boost the electron-withdrawing strength of the aromatic molecular ligand through resonance and induction effects. This provides a straightforward way to use chemical functional groups to construct optical cycling moieties for laser cooling, state preparation, and quantum measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.123002DOI Listing

Publication Analysis

Top Keywords

optical cycling
12
franck-condon tuning
4
optical
4
tuning optical
4
cycling
4
cycling centers
4
centers organic
4
organic functionalization
4
functionalization laser
4
laser induced
4

Similar Publications

Realizing a 3C Fast-Charging Practical Sodium Pouch Cell.

Angew Chem Int Ed Engl

January 2025

Beihang University, 37 Xue Yuan Road, Hai Dian District, 100191, Beijing, CHINA.

Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.

View Article and Find Full Text PDF

Scattering-type scanning near-field optical microscopy (-SNOM) under the excitation of single cycle picosecond (ps) pulse provides access to terahertz (THz) time-resolved nanoscopy. However, the development of THz nanoscopy has been greatly limited due to the inherently low efficiency of the scattered field and the convolution of the intrinsic material response with the extrinsic response of the cantilevered tip. In this work, we quantitatively study the near-field time-delayed pulse transients of resonant cantilevered tips, observing localized tip-enhanced coupling as well as delocalized collective charge oscillations propagating as resonant surface waves along cantilevered tips.

View Article and Find Full Text PDF

Thermal engineering can be used to exploit absorption in a silicon optical cavity. In this work, the steady state profile of the heat generated by absorption is shaped and used to generate a dynamic heterostructure in a weakly confined silicon optical cavity. This is demonstrated in an edge defect photonic crystal optomechanical cavity to produce phonon lasing and sub-GHz optical pulsing with photon-phonon cooperativity of 0.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

We present direct differential phase recovery-an open-loop phasemeter topology for differential optical interferometric measurements. The technique aims to remove common mode signal dynamics prior to phase-tracking, which reduces the dynamic range requirements of the phasemeter tracking optical phase differences. A phase difference measurement is experimentally demonstrated with this technique, achieving a phase sensitivity of 1 × 10rad/Hz with a common-mode noise rejection of 141 dB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!