A -symmetric triarylamine-based macrocycle (i.e., hexaaza[1]paracyclophane), decorated with six lateral amide functions, is synthesized by a convergent and modular strategy. This macrocycle is shown to undergo supramolecular polymerization in -dichlorobenzene, and its nanotubular structure is elucidated by a combination of spectroscopy and microscopy techniques, together with X-ray scattering and molecular modeling. Upon sequential oxidation, a spectroelectrochemical analysis of the supramolecular polymer suggests an extended electronic delocalization of charge carriers both within the macrocycles (through bond) and between the macrocycles along the stacking direction (through space).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c00623 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Division, Biomedical Technology Wing, 695011, Thiruvananthapuram, INDIA.
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFACS Mater Lett
January 2025
Department of Chemistry, Durham University, Durham, DH1 3LE, U.K.
The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China.
Gouty arthritis is one of the most common forms of inflammatory arthritis and has brought a significant burden on patients and society. Current strategies for managing gout primarily focus on long-term urate-lowering therapy. With the rapid advancement of point-of-care testing (POCT) technology, continuous monitoring of gout-related biomarkers like uric acid (UA) or inflammatory cytokines can provide rapid and personalized diagnosis for gout management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!