Sustained Photosynthesis and Oxygen Generation of Microalgae-Embedded Silk Fibroin Hydrogels.

ACS Biomater Sci Eng

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

Published: June 2021

Microalgae immobilized in hydrogels offer advantages over those cultured in suspension culture in terms of carbon fixation and oxygen emission. However, alginate as a commonly used hydrogel for microalgal immobilization encounters problems with mechanical strength and stability. To address this limitation, silk fibroin (silk) hydrogels prepared by ultrasonication were utilized to host microalgae when mixed with the presonicated protein solution prior to its gelation. The gelation time, stability, and light transmission of these silk gels were evaluated, and a silk concentration of 4% w/v and a gel thickness of 1 mm provided mechanical strength and stability during algal culture in comparison to alginate hydrogels. Furthermore, silk hydrogels with algal cell densities of 7.6 × 10 and 7.8 × 10 cells/mL had better stability than those with a lower cell density (3.2 × 10 cells/mL), likely due to cell confinement and impact on proliferation. The silk hydrogels with microalgae at a high density generated 6.13 mg/L of oxygen continuously for 7 days. An oxygen-generating device was fabricated by coating the surface of a dialysis tube with a thin layer of the microalgae-embedded silk hydrogel, where the microalgal cells were nourished with culture medium prefilled in the dialysis tube. When suspended in a sealed flask filled with CO gas, the system continuously produced oxygen (151 mL) for at least 60 days, with an oxygen production efficiency 6 times that of microalgal suspension culture controls. This microalgae embedding and cultivation technique could have potential utility in air purification, tissue repair, and other applications due to the efficient and sustained generation of oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.1c00168DOI Listing

Publication Analysis

Top Keywords

silk hydrogels
12
silk
8
microalgae-embedded silk
8
silk fibroin
8
hydrogels microalgae
8
suspension culture
8
hydrogel microalgal
8
mechanical strength
8
strength stability
8
dialysis tube
8

Similar Publications

Study on Highly Sensitive Capacitive Pressure Sensor Based on Silk Fibroin-Lignin Nanoparticles Hydrogel.

Biomacromolecules

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.

View Article and Find Full Text PDF

Nanoscale self-assembly and water retention properties of silk fibroin-riboflavin hydrogel.

J Chem Phys

January 2025

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India.

Silk-fibroin hydrogels have gained considerable attention in recent years for their versatile biomedical applications. The physical properties of a complex hydrogel, comprising silk fibroin and riboflavin, surpass those of the silk fibroin-hydrogel without additives. This study investigates silk fibroin-riboflavin (silk-RIB) hydrogel at the atomistic level to uncover molecular structures and chemical characteristics specific to silk fibroin and riboflavin molecules in an aqueous medium.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is a prevalent joint disorder that leads to cartilage breakdown, causing significant pain and potential deformities, with current treatment options showing limitations.
  • Cartilage organoids, which mimic natural cartilage structures, can help advance OA research and serve as effective fillers for cartilage repair due to their three-dimensional properties and structure.
  • Silk fibroin (SF)-based hydrogels are highlighted as ideal materials for creating these organoids, providing excellent mechanical properties and biocompatibility, and their development is enhanced through artificial intelligence for optimized treatment solutions.
View Article and Find Full Text PDF

This work investigated the production and characterization of a silk fibroin (SF) hydrogel incorporated with an (AV) extract. Four extraction methods, ultrasound-assisted extraction with bath and probe, stirring, and Soxhlet, were tested, while the hydrogel was produced by a one-step freeze-thaw method. Besides the extraction yield, the antioxidant capacity of the extracts was accessed, which allowed to select the extract obtained by ultrasound-assisted extraction to be incorporated into the hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!