Starch is biosynthesized during seed development and this process is regulated by many bZIP proteins in bread wheat. Abscisic acid (ABA), an important phyto-hormone involved in various physiological processes mediated by bZIPs in plants including seed development. The 'Group A' TabZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis, rice and other cereal crops but their role in regulation of amylose biosynthesis in wheat is limited. In this study 83 'Group A' TabZIPs were characterized by gene expression analysis in wheat amylose mutants. A set of 17 TabZIPs was selected on the basis of differential expression (> 2 fold) in low and high amylose mutants from RNA-seq data and validated by qRT PCR. Based on qRT PCR and correlation analysis out of the 17 TabZIPs six differentially expressed candidate TabZIPs were identified, involving in high amylose biosynthesis. The TabZIP175.2, identified as upregulated in all high amylose lines and TabZIP90.2, TabZIP129.1, TabZIP132.2, TabZIP143 and TabZIP159.2 were found downregulated in all low amylose lines, after exogenous supply of ABA. Proximal promoter analysis of starch pathway genes revealed the presence of ABA-responsive elements (ABREs) that are putative binding sites for bZIPs. Collectively, these findings indicated the involvement of putative six candidate TabZIPs as transcriptional regulators of amylose related genes via an ABA-dependent pathway in wheat. This study could help the investigators to make an informed decision to edit wheat genome for high/low amylose content using gene-editing technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-06282-4DOI Listing

Publication Analysis

Top Keywords

amylose biosynthesis
12
high amylose
12
amylose
9
abscisic acid
8
transcription factors
8
biosynthesis wheat
8
seed development
8
amylose mutants
8
qrt pcr
8
candidate tabzips
8

Similar Publications

The presence of exogenous protein can delay starch digestion. However, systematic studies on the effects of protein on starch digestion under various heat treatments still need to be completed. In this study, the effects of exogenous protein and heat treatments on corn starch digestibility were investigated.

View Article and Find Full Text PDF

Characterization of glycogen-related glycoside hydrolase and from and their roles in biofilm formation and virulence.

Front Cell Infect Microbiol

January 2025

NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Glycogen is a polymer used by bacteria to store excess glucose, playing a crucial role in bacterial growth, stress resistance, biofilm formation, and virulence. In bacteria, the glycoside hydrolase family 13 protein are involved in the synthesis and metabolism of glycogen, respectively. The absence of these enzymes leads to changes in bacterial glycogen content, thereby affecting the growth metabolism of the strain.

View Article and Find Full Text PDF

High-quality aromatic rice (HAR) is most sensitive to low-temperature stress at the booting stage (LTB), and LTB leads to quality reduction. The key enzymes involved in nitrogen and carbon metabolism significantly affect the synthesis of proteins and starch, thereby influencing the nutritional and taste quality of rice. However, to date, no studies have focused on the after-effects of low-temperature at booting on the quality formation of HAR.

View Article and Find Full Text PDF

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat.

J Integr Plant Biol

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood.

View Article and Find Full Text PDF

The Consumption of High-Amylose Rice and its Effect on Postprandial Blood Glucose Levels: A Literature Review.

Nutrients

November 2024

Laboratory of Community Health and Nutrition, Course of Food Science, Department of Applied Bioresource Science, The United Graduate School of Agriculture Sciences, Ehime University, Matsuyama 790-8566, Japan.

Rice is a major staple in the diets of East Asian populations. Numerous meta-analyses have shown an association between high white rice consumption and a higher risk of diabetes. High-amylose rice (varieties with over 25% amylose content) is absorbed more slowly in the gut compared to low-amylose rice, and it results in lower levels of postprandial blood glucose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!