Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: This study aimed to describe the rates and causes of unplanned readmissions within 30 days following carotid artery stenting (CAS) and to use artificial intelligence machine learning analysis for creating a prediction model for short-term readmissions. The prediction of unplanned readmissions after index CAS remains challenging. There is a need to leverage deep machine learning algorithms in order to develop robust prediction tools for early readmissions.
Methods: Patients undergoing inpatient CAS during the year 2017 in the US Nationwide Readmission Database (NRD) were evaluated for the rates, predictors, and costs of unplanned 30-day readmission. Logistic regression, support vector machine (SVM), deep neural network (DNN), random forest, and decision tree models were evaluated to generate a robust prediction model.
Results: We identified 16,745 patients who underwent CAS, of whom 7.4% were readmitted within 30 days. Depression [p < 0.001, OR 1.461 (95% CI 1.231-1.735)], heart failure [p < 0.001, OR 1.619 (95% CI 1.363-1.922)], cancer [p < 0.001, OR 1.631 (95% CI 1.286-2.068)], in-hospital bleeding [p = 0.039, OR 1.641 (95% CI 1.026-2.626)], and coagulation disorders [p = 0.007, OR 1.412 (95% CI 1.100-1.813)] were the strongest predictors of readmission. The artificial intelligence machine learning DNN prediction model has a C-statistic value of 0.79 (validation 0.73) in predicting the patients who might have all-cause unplanned readmission within 30 days of the index CAS discharge.
Conclusions: Machine learning derived models may effectively identify high-risk patients for intervention strategies that may reduce unplanned readmissions post carotid artery stenting.
Central Illustration: Figure 2: ROC and AUPRC analysis of DNN prediction model with other classification models on 30-day readmission data for CAS subjects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190015 | PMC |
http://dx.doi.org/10.1007/s12325-021-01709-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!