Biological Control of Aphis spiraecola (Hemiptera: Aphididae) Using Three Different Flowering Plants in Apple Orchards.

J Econ Entomol

College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, China.

Published: June 2021

Increasing the biodiversity of agroecosystems can increase populations of natural enemies that are useful for pest control. Orchards often have a low diversity of plant species, which is not conducive to maintaining ecosystem functions and services. However, additional flowering plants could provide natural enemies with beneficial resources. To assess the ability of flowering plants to attract predators and increase the biological control of Aphis spiraecola Patch, we established individual plots of three different flowering plant species with sequential bloom periods between the rows of apple orchard. These plants attracted predators such as Coccinellidae, Syrphidae, and Chrysopidae when flowering. The density of predators on trees in the three flowering plant plots was significantly higher than that in the control, whereas the density of aphids on trees in Orychophragmus violaceus (L.) O. E. Schulz (Rhoeadales: Brassicaceae) and Cnidium monnieri (Linn.) Cuss. (Apiales: Apiaceae) plots were significantly lower than that in control. The density of aphids on trees in Calendula officinalis L. (Asterales: Asteraceae) plots was significantly lower than in other plots at second peak period. There was a significant negative correlation between the population of aphids and predators on trees at peak of aphids. Cage exclusion tests showed that the biocontrol services index (BSI) of O. violaceus was highest (32.7%) on 24 May, and the BSI of C. monnieri was highest (47.6%) on 7 June. Our results suggest that the temporal combination of different flowering plants could provide useful effective biocontrol to management pest in orchard.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toab064DOI Listing

Publication Analysis

Top Keywords

flowering plants
16
three flowering
12
biological control
8
control aphis
8
aphis spiraecola
8
natural enemies
8
plant species
8
plants provide
8
flowering plant
8
predators trees
8

Similar Publications

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!