Purpose: To evaluate efficacy and safety of intravitreal dexamethasone 0.7 mg implant in treatment-naïve DME patients and to assess the utility of OCT structural biomarkers as predictors of functional response after treatment.
Methods: Thirty-nine eyes of 39 diabetic patients with center involving DME were enrolled. Best-corrected visual acuity (BCVA) and SS-OCT (DRI SS-OCT Triton, Topcon, Japan) to evaluate central retinal thickness (CRT), serous retinal detachment (SRD), intraretinal cysts (IRC), number of hyper-reflective spots (HRS), integrity of the ellipsoid zone (EZ), disorganization of the inner retinal layers (DRIL), vitreomacular adhesion (VMA), vitreomacular traction (VMT), and posterior vitreous detachment (PVD) were evaluated at baseline and at 3, 6, and 12 months after treatment. Multiple logistic analysis was performed to evaluate the possible OCT biomarker as predictive factors for final visual acuity improvement at the end of treatment.
Results: At 12 months after treatment, the mean BCVA improved from 51.6 ± 17.5 to 56.9 ± 17.3 ETDRS letters (=0.03). Furthermore, there were statistically significant changes in CRT, IRC, HRS, and SRD. Nineteen patients presented a >10-letters improvement in BCVA; the presence of SRD at baseline was a predictor of good functional treatment response at 12 months (OR 2.1; 95% C.I. 1.2-4.9; =0.001) as well as the presence of EZ integrity preoperatively (OR 1.3; 95% C.I. 0.5-2.4; =0.001) and the absence of vitreoretinal interface alteration (OR 1.1; 95% C.I. 0.3-2.3; =0.02). No significant changes in the IOP and lens status were observed throughout the follow-up period.
Conclusion: This study empathized the importance of structural biomarkers as predictors of favorable response and confirmed the efficacy and safety of intravitreal dexamethasone implant in treatment-naïve DME patients showing a better functional response in the presence of SRD integrity of EZ and absence of vitreoretinal alterations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012128 | PMC |
http://dx.doi.org/10.1155/2021/6639418 | DOI Listing |
Endocr Relat Cancer
January 2025
X Zheng, Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).
View Article and Find Full Text PDFPlanta
January 2025
ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, Delhi, India.
Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are distinct histological subtypes of esophageal cancer. The tumor microenvironment of each subtype significantly influences the efficacy of immunotherapy. However, the characteristics of the tumor microenvironments of both subtypes, as well as their specific impacts on immunotherapy outcomes, still require further elucidation.
View Article and Find Full Text PDFClin Rev Allergy Immunol
December 2024
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Biomechanics, Poznan University of Physical Education, Poznań, Poland.
This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!