In recent years, the Internet of Things technology has flourished, and there have been corresponding practical results in various fields. In medical care, the introduction of Internet of Things technology must also be a new trend in the development of hospital informatization, and it is the development stage of the digital medical process. The traditional infusion system shows that the infusion bottle is not replaced in time, the infusion waiting time is too long, the infusion efficiency is too low, and the existing medical staff is far from meeting the needs of the huge infusion population. Therefore, this article proposes a technology based on the Internet of Things application of the infusion control system in joint orthopedics nursing work to improve the efficiency of infusion in nursing work. This article deeply learns and uses the Internet of Things technology to build a new infusion management and control system, which is applied to joint orthopedics nursing treatment. This paper designs the application research experiment of the infusion control system. Through the Internet of Things technology, the relevant data in the infusion process are uploaded and sent to the network center of the hospital. Nursing staff can directly see the infusion situation directly through the computer console. This article compares and analyzes two different infusion systems and draws conclusions. The infusion ringing rate of the control group was 81.3%, and the infusion ringing rate of the IoT group was 29.8%; the time for timely replacement of the infusion bottle after IoT data control was 13.89 min, compared to 19.76 min before. A variety of data results show that the infusion management and control system based on the Internet of Things technology has played a great role in joint orthopedics care, which can greatly improve the efficiency of infusion, replace the infusion or deal with failures in time for patients, and improve patient satisfaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018849PMC
http://dx.doi.org/10.1155/2021/6691258DOI Listing

Publication Analysis

Top Keywords

internet things
28
things technology
24
control system
20
infusion
18
joint orthopedics
16
infusion control
12
based internet
12
orthopedics nursing
12
nursing work
12
application infusion
8

Similar Publications

Recent developments in artificial intelligence and the internet-of-things have created great demand for low-power microelectronic devices. Two-dimensional (2D) electrical switching materials are extensively used in neuromorphic computing technology, yet their high leakage current and low endurance impede their further application. This study presents a vertical crossbar-structured conductive-bridge threshold switching device based on 2D TaSe oxide.

View Article and Find Full Text PDF

In general, edge computing networks are based on a distributed computing environment and hence, present some difficulties to obtain an appropriate load balancing, especially under dynamic workload and limited resources. The conventional approaches of Load balancing like Round-Robin and Threshold-based load balancing fails in scalability and flexibility issues when applied to highly variable edge environments. To solve the problem of how to achieve steady-state load balance and provide dynamic adaption to edge networks, this paper proposes a new framework that using PCA and MDP.

View Article and Find Full Text PDF

In recent years, there has been a growing interest among researchers in Internet of Things Blockchain (IoTB). A critical aspect of IoTB is its consensus protocol, which faces challenges such as limited bandwidth, energy constraints, and storage space restrictions. To tackle these challenges, Hierarchical IoTB (HIoTB) networks have been proposed.

View Article and Find Full Text PDF

Statistical-based detection of pilot contamination attack for NOMA in 5G networks.

Sci Rep

January 2025

Department of Information Technology, Faculty of Computers and Information, Assiut University, Assiut, Assiut, 71515, Egypt.

Fifth-generation (5G) communication technologies, such as millimeter wave communication, massive multiple-input-multiple-output and non-orthogonal-multiple-access (NOMA) are playing a pivotal role in promoting the modern applications of the Internet-of-Things. Using non-orthogonal resource allocation, NOMA can increase spectrum efficiency and achieve wide connectivity with low transmission delay and signaling cost. Despite the high potential of NOMA in 5G communications, NOMA is susceptible to a pilot contamination attack (PCA), in which an attacker resents the same pilot signals as authorized users.

View Article and Find Full Text PDF

New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!