Teratogenic Effect of High Dose of (Myrtaceae) Leaves on Wistar Albino Rat Embryos and Fetuses.

Evid Based Complement Alternat Med

Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Published: March 2021

is an important medicinal plant effective against hypertension, diabetes mellitus, and cancer but with no evidence of its teratogenicity. This study was planned to investigate the teratogenic potential of leaves on rat embryos and fetuses. Five groups of Wistar albino rats, each consisting of ten pregnant rats, were used as experimental animals. Groups I-III rats were treated with 250, 500, and 1000 mg/kg of hydroethanolic extract of leaves, and groups IV and V were control and ad libitum control, respectively. Rats were treated during day 6-12 of gestation. Embryos and fetuses were retrieved at day 12 and day 20 of gestation, respectively. The embryos were assessed for developmental delays and growth retardation. The fetuses were examined for gross external, skeletal, and visceral anomalies. In 12-day old rat embryos, crown-rump length, number of somites, and morphological scores were significantly reduced by the treatment of 1000 mg/kg of the extract. The external morphological and visceral examinations of rat fetuses did not reveal any detectable structural malformations in the cranial, nasal, oral cavities, and visceral organs. The ossification centers of fetal skull, vertebrae, hyoid, forelimb, and hindlimb bones were not significantly varied across all groups. However, even if not statistically significant, high-dose treated rat fetuses had a reduced number of ossification centers in the sternum, caudal vertebrae, metatarsal, metacarpal, and phalanges. Treatment with the hydroethanolic extract of leaves produced no significant skeletal and soft tissue malformations. The plant extract did not produce significant teratogenic effects on rat embryos/fetuses up to 500 mg/kg doses but retarded the growth of embryos at high dose (1000 mg/kg) as evidenced by decreased crown-rump length, number of somites, and morphological scores. Therefore, it is not advisable to take large doses of the plant during pregnancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012146PMC
http://dx.doi.org/10.1155/2021/6677395DOI Listing

Publication Analysis

Top Keywords

rat embryos
12
embryos fetuses
12
high dose
8
wistar albino
8
rats treated
8
hydroethanolic extract
8
extract leaves
8
gestation embryos
8
crown-rump length
8
length number
8

Similar Publications

Peony-shaped zinc oxide nanoflower synthesized via hydrothermal route exhibits promising anticancer and anti-amyloid activity.

BMC Pharmacol Toxicol

December 2024

Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.

Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.

Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.

View Article and Find Full Text PDF

Exosomes derived from umbilical cord mesenchymal stem cells promote healing of complex perianal fistulas in rats.

Stem Cell Res Ther

December 2024

National Colorectal Disease CenterNanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, People's Republic of China.

Background: Complex perianal fistulas, challenging to treat and prone to recurrence, often require surgical intervention that may cause fecal incontinence and lower quality of life due to large surgical wounds and potential sphincter damage. Human umbilical cord-derived MSCs (hUC-MSCs) and their exosomes (hUCMSCs-Exo) may promote wound healing.

Methods: This study assessed the efficacy, mechanisms, and safety of these exosomes in treating complex perianal fistulas in SD rats.

View Article and Find Full Text PDF

Objectives: To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.

Methods: Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1).

View Article and Find Full Text PDF

Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue.

View Article and Find Full Text PDF

Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.

Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!