The C3-C4 propriospinal system is an important pathway mediating movement in cats; it contributes to movements in primates (including humans), and may have a role in recovery after lesion. Validated clinical tests of this system would find many applications, therefore we sought to test whether non-monosynaptic homonymous facilitation of the forearm flexor H reflex is mediated solely via a C3-C4 propriospinal pathway. In one anesthetized macaque monkey, median nerve stimulation elicited an H reflex in the flexor carpi radialis (FCR). Median nerve conditioning stimuli at sub-threshold intensities facilitated the H reflex, for inter-stimulus intervals up to 30 ms. Successive spinal surgical hemisections were then made. C2 lesion left the homonymous facilitation intact, suggesting mediation by spinal, not supraspinal pathways. Facilitation also remained after a second lesion at C5, indicating a major role for segmental (C7-C8) rather than propriospinal (C3-C4) interneurons. In separate experiments in five healthy human subjects, a threshold tracking approach assessed changes in peripheral axon excitability after conditioning stimulation. This was found to be enhanced up to 20 ms after the conditioning stimulus, and could partly, although not completely, underlie the H reflex facilitation seen. We conclude that homonymous facilitation of the H reflex in FCR can be produced by segmental spinal mechanisms, as well as by a supranormal period of nerve excitability. Unfortunately, this straightforward test cannot therefore be used for selective assessment of propriospinal circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021928 | PMC |
http://dx.doi.org/10.3389/fnsys.2021.641816 | DOI Listing |
J Neuroophthalmol
May 2024
Faculty of Medicine (CELW), University of Sydney, Sydney, Australia; Faculty of Medicine (BWHL, JEO, HL-G, SW, ES, AA, MTC, ICF), University of New South Wales, Sydney, Australia; Department of Neurology (JEO, HL-G, SW, ES), Prince of Wales Hospital, Sydney, Australia; and Department of Ophthalmology (AA, MTC, ICF), Prince of Wales Hospital, Sydney, Australia.
Background: Visual changes due to hyperglycemia in diabetes are not uncommon. While blurred vision is a well-established sequela of chronic hyperglycemia, homonymous hemianopia with or without electroclinical seizures is much rarer and can be mistaken for migraine, temporal arteritis, or ischemia of the central nervous system.
Methods: This article analyzed case studies for 3 patients (67M, 68M, 52F) presenting with complex visual phenomena, from 3 to 42 days duration, including pathogenesis, clinical findings, management, and follow-up.
Exp Brain Res
June 2024
Department of Anatomy and Structural Science, Yamagata University School of Medicine, Yamagata, Japan.
The anterior (DA) and posterior parts of the deltoid (DP) show alternating contraction during shoulder flexion and extension movements. It is expected that an inhibitory spinal reflex between the DA and DP exists. In this study, spinal reflexes between the DA and DP were examined in healthy human subjects using post-stimulus time histogram (PSTH) and electromyogram averaging (EMG-A).
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2024
Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy.
Immersive technology, such as extended reality, holds promise as a tool for educating ophthalmologists about the effects of low vision and for enhancing visual rehabilitation protocols. However, immersive simulators have not been evaluated for their ability to induce changes in the oculomotor system, which is crucial for understanding the visual experiences of visually impaired individuals. This study aimed to assess the REALTER (Wearable Egocentric Altered Reality Simulator) system's capacity to induce specific alterations in healthy individuals' oculomotor systems under simulated low-vision conditions.
View Article and Find Full Text PDFJ Physiol
May 2024
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.
bioRxiv
December 2023
Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.
When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9-13 weeks interval in seven adult cats (4 males and 3 females).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!