Type I and type II classical cadherins comprise a family of cell adhesion molecules that regulate cell sorting and tissue separation by forming specific homo and heterophilic bonds. Factors that affect cadherin-mediated cell-cell adhesion include cadherin binding affinity and expression level. This study examines the expression pattern of type I cadherins (, , , and ), type II cadherins (, , , , , , , , , and ), and the atypical cadherin 13 () during distinct morphogenetic events in the developing mouse central nervous system from embryonic day 11.5 to postnatal day 56. Cadherin mRNA expression levels obtained from hybridization experiments carried out at the Allen Institute for Brain Science (https://alleninstitute.org/) were retrieved from the Allen Developing Mouse Brain Atlas. is the most abundantly expressed type I cadherin throughout development, while , , and are expressed at low levels. Type II cadherins show a dynamic pattern of expression that varies between neuroanatomical structures and developmental ages. Atypical expression pattern correlates with in abundancy and localization. Analyses of cadherin-mediated relative adhesion estimated from their expression level and binding affinity show substantial differences in adhesive properties between regions of the neural tube associated with the segmentation along the anterior-posterior axis. Differences in relative adhesion were also observed between brain nuclei in the developing subpallium (basal ganglia), suggesting that differential cell adhesion contributes to the segregation of neuronal pools. In the adult cerebral cortex, type II cadherins , , , and are abundant in intermediate layers, while shows a gradated expression from the deeper layer 6 to the superficial layer 1, and , , and are more abundant in the deeper layers. Person's correlation analyses of cadherins mRNA expression patterns between areas and layers of the cerebral cortex and the nuclei of the subpallium show significant correlations between certain cortical areas and the basal ganglia. The study shows that differential cadherin expression and cadherin-mediated adhesion are associated with a wide range of morphogenetic events in the developing central nervous system including the organization of neurons into layers, the segregation of neurons into nuclei, and the formation of neuronal circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8021962PMC
http://dx.doi.org/10.3389/fnmol.2021.633719DOI Listing

Publication Analysis

Top Keywords

type cadherins
20
central nervous
12
nervous system
12
developing mouse
12
expression
10
type
9
type type
8
associated segmentation
8
brain nuclei
8
nuclei developing
8

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Enhanced membrane protein production in HEK293T cells via gene knockout: A CRISPR-Cas9 mediated approach.

Biomol Biomed

January 2025

Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Translational Research Team, Surginex Co., Republic of Korea; Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

HEK293T cells are extensively utilized for therapeutic protein production due to their human origin, which enables accurate post-translational modifications. This study aimed to enhance membrane protein production in HEK293T cells by knocking out the ATF4 gene using CRISPR-Cas9 technology. The ATF4 gene was edited by infecting HEK293T cells with a lentivirus carrying optimized single-guide RNA (ATF4-KO-3) and Cas9 genes.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures.

View Article and Find Full Text PDF

CTNNA1 codes α-1 catenin, a molecule that functions in intercellular adhesion in combination with E-cadherin (coded by CDH1). A germline pathogenic variant (GPV) of CTNNA1 increases the risk of hereditary diffuse gastric cancer (HDGC); however, this GPV has not been reported in Japan. A 35-year-old Japanese man with an advanced gastric cancer underwent comprehensive genome profiling (CGP), which led to the detection of a CTNNA1 GPV (p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!