B-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular program activated downstream this pathway has become of paramount importance for the development of innovative therapies. Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108 temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation. This dataset revealed a structured temporal response composed of 13,065 transcripts and 4027 proteins, comprising a leukemic proliferative signature consisting of 430 genes and 374 proteins. Mathematical modeling of this complex cellular response further highlighted a transcriptional network driven by 14 early genes linked to proteins involved in cell proliferation. This group includes expected genes (EGR1/2, NF-kB) and genes involved in NF-kB signaling modulation (TANK, ROHF) and immune evasion (KMO, IL4I1) that have not yet been associated with leukemic cells proliferation. Our study unveils the BCR-activated proliferative genetic program in primary leukemic cells. This approach combining temporal measurements with modeling allows identifying new putative targets for innovative therapy of lymphoid malignancies and also cancers dependent on ligand-receptor interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102193 | PMC |
http://dx.doi.org/10.1038/s41375-021-01221-5 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand. Electronic address:
A protein subunit vaccine comprising conserved surface-exposed outer membrane proteins (SE-OMPs) is considered a promising platform for leptospirosis vaccine. The search for novel vaccine candidates that confer high protective efficacy against leptospirosis is ongoing. The LIP3228 protein was previously identified as a conserved and abundant SE-OMP with the potential to serve as an effective vaccine candidate.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is an increasingly recognized extra-articular manifestations (EAMs) in the RA, with highly morbidity and mortality. The identification of key molecules involved in RA-ILD has a high requirement in clinic, and the role of their transcriptional regulation in the etiology of RA-ILD is great significant for investigation. In this study, we collected the whole peripheral blood samples of RA-ILD and RA only patients to bulk RNA-sequence.
View Article and Find Full Text PDFHematol Oncol
January 2025
Hematology, Oncology R&D, AstraZeneca, Cambridge, UK.
Contemporary studies of Bruton tyrosine kinase inhibitor (BTKi) resistance focus on mutations in the B-cell receptor (BCR) pathway, but alternative mechanisms of resistance remain undefined. Here, we sought to identify novel predictive markers of acquired resistance to acalabrutinib, a second-generation BTKi, in patients with chronic lymphocytic leukemia (CLL). Clinical samples from 41 patients with relapsed/refractory or treatment-naive CLL receiving acalabrutinib as part of a clinical trial (NCT02029443) were divided into two groups: those who continued to respond to treatment (NP, n = 23) and those who developed progressive disease on acalabrutinib therapy (PD, n = 18).
View Article and Find Full Text PDFBiomicrofluidics
December 2024
Department of Biomedical Engineering, University of California, Irvine, California 92697, USA.
Chimeric antigen receptor (CAR) T-cell therapy shows unprecedented efficacy for cancer treatment, particularly in treating patients with various blood cancers, most notably B-cell acute lymphoblastic leukemia. In recent years, CAR T-cell therapies have been investigated for treating other hematologic malignancies and solid tumors. Despite the remarkable success of CAR T-cell therapy, cytokine release syndrome (CRS) is an unexpected side effect that is potentially life-threatening.
View Article and Find Full Text PDFLong-term allograft survival is limited by humoral-associated chronic allograft rejection, suggesting inadequate constraint of humoral alloimmunity by contemporary immunosuppression. Heterogeneity in alloreactive B cells and the incomplete definition of which B cells participate in chronic rejection in immunosuppressed transplant recipients limits our ability to develop effective therapies. Using a double-fluorochrome single-HLA tetramer approach combined with single-cell culture, we investigated the B-cell receptor (BCR) repertoire characteristics, avidity, and phenotype of donor HLA-DQ reactive B cells in a transplant recipient with end-stage donor specific antibody (DSA)-associated cardiac allograft vasculopathy while receiving maintenance immunosuppression (tacrolimus, mycophenolate mofetil, prednisone).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!