AI Article Synopsis

Article Abstract

In this study, talc-supported nano-galvanic Sn doped nZVI (Talc-nZVI/Sn) bimetallic particles were successfully synthesized and utilized for Cr(VI) remediation. Talc-nZVI/Sn nanoparticles were characterized by FESEM, EDS, FTIR, XRD, zeta potential, and BET analysis. The findings verified the uniform dispersion of nZVI/Sn spherical nanoparticles on talc surface with a size of 30-200 nm, and highest specific surface area of 146.38 m/g. The formation of numerous nano-galvanic cells between nZVI core and Sn shell enhanced the potential of bimetallic particles in Cr(VI) mitigation. Moreover, batch experiments were carried out to investigate optimum conditions for Cr(VI) elimination and total Cr(VI) removal was achieved in 20 min using Sn/Fe mass ratio of 6/1, the adsorbent dosage of 2 g/L, initial Cr(VI) concentration of 80 mg/L, at the acidic environment (pH = 5) and temperature of 303 K. Besides, co-existing of metallic cations turned out to facilitate the electron transfer from the nano-galvanic couple of NZVI/Sn, and suggested the revolution of bimetallic particles to trimetallic composites. The aging study of the nanocomposite confirmed its constant high activity during 60 days. The removal reaction was well described by the pseudo-second-order kinetic and the modified Langmuir isotherm models. Overall, due to the synergistic galvanic cell effect of nZVI/Sn nanoparticles and full coverage of active sites by Sn layer, Talc-nZVI/6Sn was utilized as a promising nanocomposite for fast and highly efficient Cr(VI) elimination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032741PMC
http://dx.doi.org/10.1038/s41598-021-87106-0DOI Listing

Publication Analysis

Top Keywords

bimetallic particles
12
crvi removal
8
crvi elimination
8
crvi
7
preparation characterization
4
nano-galvanic
4
characterization nano-galvanic
4
bimetallic
4
nano-galvanic bimetallic
4
bimetallic fe/sn
4

Similar Publications

Electrochemical energy storage plays a critical role in the transition to clean energy. With the growing demand for efficient and sustainable energy solutions, supercapacitors have gained significant attention due to their high specific capacitance, rapid charge/discharge capabilities, long lifespan, safe operation across various temperatures, and minimal maintenance needs. This study introduces a novel approach for the synthesis of high-performance supercapacitor electrodes by using MnNi-MOF-74 as a precursor.

View Article and Find Full Text PDF

Controllable synthesis of Pd and Pt shells on Au nanoparticles with electrodeposition.

Sci Rep

January 2025

Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.

Shells of Pd and Pt were synthesized on Au nanoparticles by electrodeposition, leading to controllable size and optical properties. This approach yielded core-shell structures with good homogeneity in size after the optimization of electrochemical parameters such as deposition current and charge transfer, as well as nanoparticle surface treatment. Dark field scattering microscopy and spectroscopy were used to track changes in the optical response of individual particles during deposition.

View Article and Find Full Text PDF

Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation.

ACS Appl Mater Interfaces

January 2025

Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.

The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.

View Article and Find Full Text PDF

In the electrocatalytic (EC) degradation process, challenges such as inefficient mass transfer, suboptimal mineralization rates, and limited current efficiency have restricted its broader application. To overcome these obstacles, this study synthesized spherical particle electrodes (FeNi@BC) with superior electrocatalytic performance using a bio-inspired preparation method. A three-dimensional electrocatalytic oxidation system based on FeNi@BC electrode, EC/FeNi@BC, showed excellent degradation efficiency of sulfamethoxazole (SMX), reaching 0.

View Article and Find Full Text PDF

Biosynthesis, Characterization, and Antibacterial Activity of Gold, Silver, and Bimetallic Nanoparticles Using L. Leaves.

Antibiotics (Basel)

December 2024

Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.

The utilization of nano-sized drug delivery systems in herbal drug delivery systems has a promising future for improving drug effectiveness and overcoming issues connected with herbal medicine. As a consequence, the use of nanocarriers as novel drug delivery systems for the improvement of traditional medicine is critical to combating infectious diseases globally. In line with this, we herein report the biosynthesis of silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and bimetallic nanoparticles (BMNPs) as antibacterial agents against pathogenic bacterial strains using L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!