Multiple concurrent and convergent stages of genome reduction in bacterial symbionts across a stink bug family.

Sci Rep

Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA.

Published: April 2021

Nutritional symbioses between bacteria and insects are prevalent and diverse, allowing insects to expand their feeding strategies and niches. A common consequence of long-term associations is a considerable reduction in symbiont genome size likely influenced by the radical shift in selective pressures as a result of the less variable environment within the host. While several of these cases can be found across distinct insect species, most examples provide a limited view of a single or few stages of the process of genome reduction. Stink bugs (Pentatomidae) contain inherited gamma-proteobacterial symbionts in a modified organ in their midgut and are an example of a long-term nutritional symbiosis, but multiple cases of new symbiont acquisition throughout the history of the family have been described. We sequenced the genomes of 11 symbionts of stink bugs with sizes that ranged from equal to those of their free-living relatives to less than 20%. Comparative genomics of these and previously sequenced symbionts revealed initial stages of genome reduction including an initial pseudogenization before genome reduction, followed by multiple stages of progressive degeneration of existing metabolic pathways likely to impact host interactions such as cell wall component biosynthesis. Amino acid biosynthesis pathways were retained in a similar manner as in other nutritional symbionts. Stink bug symbionts display convergent genome reduction events showing progressive changes from a free-living bacterium to a host-dependent symbiont. This system can therefore be used to study convergent genome evolution of symbiosis at a scale not previously available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8032781PMC
http://dx.doi.org/10.1038/s41598-021-86574-8DOI Listing

Publication Analysis

Top Keywords

genome reduction
20
symbionts stink
12
stages genome
8
stink bug
8
stink bugs
8
convergent genome
8
genome
7
reduction
6
symbionts
6
multiple concurrent
4

Similar Publications

Hydroxylated-Benz[a]anthracenes Induce Two Apoptosis-Related Gene Expressions in the Liver of the Nibbler Fish .

Toxics

December 2024

Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.

Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish () were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period.

View Article and Find Full Text PDF

Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.

View Article and Find Full Text PDF

A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.

View Article and Find Full Text PDF

Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, CRB14.

View Article and Find Full Text PDF

Sulfidogenic bacteria cause numerous issues in the oil industry since they produce sulfide, corroding steel equipment, reducing oil quality, and worsening the environmental conditions in oil fields. The purpose of this work was to isolate and taxonomically identify the sulfidogenic bacteria responsible for the corrosion of steel equipment at the Karazhanbas oil field (Kazakhstan). In this study, we characterized five sulfidogenic strains of the genera , , and isolated from the formation water of the Karazhanbas oil field (Kazakhstan).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!