Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma.

J Immunother Cancer

Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China

Published: April 2021

Background: Glypican-3 (GPC3), a cell surface glycoprotein that is pathologically highly expressed in hepatocellular carcinoma (HCC), is an attractive target for immunotherapies, including chimeric antigen receptor (CAR) T cells. The serum GPC3 is frequently elevated in HCC patients due to the shedding effect of cell surface GPC3. The shed GPC3 (sGPC3) is reported to block the function of cell-surface GPC3 as a negative regulator. Therefore, it would be worth investigating the potential influence of antigen shedding in anti-GPC3 CAR-T therapy for HCC.

Methods: In this study, we constructed two types of CAR-T cells targeting distinct epitopes of GPC3 to examine how sGPC3 influences the activation and cytotoxicity of CAR-T cells in vitro and in vivo by introducing sGPC3 positive patient serum or recombinant sGPC3 proteins into HCC cells or by using sGPC3-overexpressing HCC cell lines.

Results: Both humanized YP7 CAR-T cells and 32A9 CAR-T cells showed GPC3-specific antitumor functions in vitro and in vivo. The existence of sGPC3 significantly inhibited the release of cytokines and the cytotoxicity of anti-GPC3 CAR-T cells in vitro. In animal models, mice carrying Hep3B xenograft tumors expressing sGPC3 exhibited a worse response to the treatment with CAR-T cells under both a low and high tumor burden. sGPC3 bound to CAR-T cells but failed to induce the effective activation of CAR-T cells. Therefore, sGPC3 acted as dominant negative regulators when competed with cell surface GPC3 to bind anti-GPC3 CAR-T cells, leading to an inhibitory effect on CAR-T cells in HCC.

Conclusions: We provide a proof-of-concept study demonstrating that GPC3 shedding might cause worse response to CAR-T cell treatment by competing with cell surface GPC3 for CAR-T cell binding, which revealed a new mechanism of tumor immune escape in HCC, providing a novel biomarker for patient enrolment in future clinical trials and/or treatments with GPC3-targeted CAR-T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039282PMC
http://dx.doi.org/10.1136/jitc-2020-001875DOI Listing

Publication Analysis

Top Keywords

car-t cells
48
cell surface
16
car-t
15
cells
14
surface gpc3
12
anti-gpc3 car-t
12
gpc3
9
cells targeting
8
hepatocellular carcinoma
8
sgpc3
8

Similar Publications

Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits.

View Article and Find Full Text PDF

Introduction: CD7 chimeric antigen receptor T-cell (CAR-T cell) therapy is an emerging method for treating hematological malignancies, and is another breakthrough in CAR-T cell therapy.

Methods: This study summarizes the currently published clinical research results on CD7 CAR-T cells and evaluates the safety and effectiveness of CD7 CAR-T cell therapy.

Results: Among the 13 studies included in this study, a total of 200 patients received CD7 CAR-T cell therapy, including 88 patients who received autologous CAR-T cells, 112 patients who received donor derived CAR-T cells.

View Article and Find Full Text PDF

Advancements and Future Directions of Dual-Target Chimeric Antigen Receptor T-Cell Therapy in Preclinical and Clinical Studies.

J Immunol Res

January 2025

Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

In recent years, chimeric antigen receptor T-cell (CAR-T) therapy has made groundbreaking progress in the treatment of various cancer types, particularly hematological malignancies. In the meantime, various preclinical and clinical studies have extensively explored dual-target CAR-T therapies which can be designed to recognize two antigens simultaneously based on the immunophenotype of tumor cells. Compared with single-target CAR-T approach, dual-target CAR-T therapies demonstrate varying degrees of superior antitumor CAR effects, prevent antigen escape and relapse, reduce on-target off-tumor effects, and ensure durable responses in different types of cancer.

View Article and Find Full Text PDF

Application of adoptive cell therapy in malignant melanoma.

J Transl Med

January 2025

Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy plays a critical role in the treatment of B-cell hematologic malignancies. The combination of PD-1 inhibitors and CAR-T has shown encouraging results in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, there are still cases where treatment is ineffective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!