This study aimed to diagnose the incidence of restless leg syndrome (RLS) in patients with diabetes mellitus (DM) type-2, thorough artificial intelligence based multilayer perceptron (MLP). 300 cases of diabetes mellitus type-2, of age between 18-80 years were included. Point-biserial correlation/Pearson Chi-Square correlations were conducted between RLS and risk factors. We trained a backpropagation MLP via. supervised learning algorithm to predict clinical outcome for RLS. Majority of the patients were having hypertension (63%) and with peripheral neuropathy (69%). Two mostly reported scaled parameters were: 18% 'tiredness' and 14%, 'impact on mood'. A significant correlation was found in RLS with smoking, hypertension and chronic renal failure (CRF). MLP model achieved more than 95% accuracy in predicting the outcome with cross entropy error 0.5%. Following scaled symptomatic variables: 'need/urge to move' (100%) achieved the highest normalized importance, followed by 'relief by moving' (85.7%), 'sleep disturbance' (62%) and 'impact on mood' (51.3%). Artificial intelligence based models can help physicians to identify the pre diagnose RLS, so that active measures can be taken in time to avoid further complications.

Download full-text PDF

Source

Publication Analysis

Top Keywords

diabetes mellitus
12
artificial intelligence
12
restless leg
8
leg syndrome
8
syndrome rls
8
rls patients
8
patients diabetes
8
mellitus type-2
8
intelligence based
8
'impact mood'
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!