Rational engineering of xylanase hyper-producing system in Trichoderma reesei for efficient biomass degradation.

Biotechnol Biofuels

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.

Published: April 2021

Background: Filamentous fungus Trichoderma reesei has been widely used as a workhorse for cellulase and xylanase productions. Xylanase has been reported as the crucial accessory enzyme in the degradation of lignocellulose for higher accessibility of cellulase. In addition, the efficient hydrolysis of xylan needs the co-work of multiple xylanolytic enzymes, which rise an increasing demand for the high yield of xylanase for efficient biomass degradation.

Results: In this study, a xylanase hyper-producing system in T. reesei was established by tailoring two transcription factors, XYR1 and ACE1, and homologous overexpression of the major endo-xylanase XYNII. The expressed xylanase cocktail contained 5256 U/mL xylanase activity and 9.25 U/mL β-xylosidase (pNPXase) activity. Meanwhile, the transcription level of the xylanolytic genes in the strain with XYR1 overexpressed was upregulated, which was well correlated with the amount of XYR1-binding sites. In addition, the higher expression of associated xylanolytic enzymes would result in more efficient xylan hydrolysis. Besides, 2310-3085 U/mL of xylanase activities were achieved using soluble carbon source, which was more efficient and economical than the traditional strategy of xylan induction. Unexpectedly, deletion of ace1 in C30OExyr1 did not give any improvement, which might be the result of the disturbed function of the complex formed between ACE1 and XYR1. The enzymatic hydrolysis of alkali pretreated corn stover using the crude xylanase cocktails as accessory enzymes resulted in a 36.64% increase in saccharification efficiency with the ratio of xylanase activity vs FPase activity at 500, compared to that using cellulase alone.

Conclusions: An efficient and economical xylanase hyper-producing platform was developed in T. reesei RUT-C30. The novel platform with outstanding ability for crude xylanase cocktail production would greatly fit in biomass degradation and give a new perspective of further engineering in T. reesei for industrial purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033665PMC
http://dx.doi.org/10.1186/s13068-021-01943-9DOI Listing

Publication Analysis

Top Keywords

xylanase
12
xylanase hyper-producing
12
hyper-producing system
8
trichoderma reesei
8
efficient biomass
8
biomass degradation
8
xylanolytic enzymes
8
xylanase cocktail
8
xylanase activity
8
efficient economical
8

Similar Publications

4-O-Methylglucaric Acid Production from Xylan with Uronic Acid Oxidase and Comparison to Glucaric Acid from Glucose.

Chembiochem

January 2025

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.

This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum.

View Article and Find Full Text PDF

Synergistic action of multiple degumming-related enzymes secreted by Bacillus subtilis XW-18: Decisive factor for driving the bio-degumming process of raw pineapple leaves.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China. Electronic address:

Degumming, a process of removing gummy substances surrounding fiber, plays a crucial role in preparing plant fibers. This study clearly clarified that the multiple degumming enzymes by Bacillus subtilis XW-18 acted as a decisive factor for driving bio-degumming process of raw pineapple leaves. Firstly, PCR analysis verified that B.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of the feed additive consisting of endo-1,3(4)-beta-glucanase and endo-1,4-beta-xylanase (produced with IMI CC 378536) (Rovabio® Excel) for the renewal of its authorisation as a zootechnical feed additive for all poultry species, weaned piglets, pigs for fattening and sows. The applicant provided evidence that the additive complies with the conditions of the authorisation. The FEEDAP Panel concluded that the additive in all its formulations remains safe for all poultry species, weaned piglets, pigs for fattening and sows, and remains safe for consumers and the environment.

View Article and Find Full Text PDF

Modern-day consumers are interested in highly nutritious and safe foods with corresponding organoleptic qualities. Such foods are increasingly subjected to various processing techniques which include the use of enzymes. These enzymes like amylases, lipases, proteases, xylanases, laccases, pullulanase, chitinases, pectinases, esterases, isomerases, and dehydrogenases could be derived from extremophilic organisms such as thermophiles, psychrophiles, acidophiles, alkaliphiles, and halophiles.

View Article and Find Full Text PDF

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!