This study aimed to investigate the effects of the external load of elastic bands attached to the waist and heels to enhance the pre-activation of leg extensor muscles on drop jumps (DJs). Twelve male college athletes volunteered for this study. Eight cameras and two force platforms were used to collect data. Each subject performed DJs with elastic band loads of 0% and 20% body weight (BW) attached to the waist and heels during the airborne and landing phases from 40- and 50-cm drop heights. Repeated measures of two-way analysis of variance were performed with two loads of the elastic bands and two heights of the platform for each dependent biomechanical variable. Jump height, reactive strength index, leg stiffness, hip, knee flexion, and ankle plantarflexion angles at the initial foot contact and ankle dorsiflexion range of motion (ROM) significantly increased with 20% BW loads. The peak ground reaction force of impact, eccentric work, and hip flexion range of motion significantly decreased with 20% BW loads. The use of the elastic bands as accentuated loading during the airborne and landing phases of DJs can induce pre-activation of the joint extensors of the lower extremity to achieve stretch-shortening cycle benefits and performance and reduce the ground impact for the lower extremity. HighlightsAttaching elastic bands to the waist and heels enables the following during drop jumps.The joint extensors of the lower extremities act as a counterbalance to the pull from the elastic bands.The performance of the drop jump was improved.The ground impact was reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17461391.2021.1915390 | DOI Listing |
Front Bioeng Biotechnol
December 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
Purpose: Spine is the most commonly found fracture site due to osteoporosis. Combined exercise including high-impact and resistance exercise shows the potential to improve bone mineral density (BMD) in the spine. However, the mechanical loading introduced by exercise, which is the mechanism of BMD changes, has not been investigated.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Department of Analytical Chemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia. Electronic address:
Skin aging, characterized by reduced elasticity, wrinkles, and changes in pigmentation, presents significant challenges in the cosmetics industry. Identifying compounds that can help mitigate these effects is crucial to developing effective anti-aging treatments and improving skin health. An advanced analytical approach for identifying skin anti-aging compounds within complex natural mixtures must be developed to achieve this.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFSci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
School of Science & New Energy Technology Engineering Laboratory of Jiangsu Provence, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210046, China.
Electrons have not only charge and spin degrees of freedom, but also additional valley degrees of freedom. The search for valleytronic materials with large valley splits is important for the development of valleytronics. In this work, we applied first principles computations to calculate 1 L HfCO at the level of HSE06.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!