The effective design of dyes optimized for thermally activated delayed fluorescence (TADF) requires the precise control of two tiny energies: the singlet-triplet gap, which has to be maintained within thermal energy, and the strength of spin-orbit coupling. A subtle interplay among low-energy excited states having dominant charge-transfer and local character then governs TADF efficiency, making models for environmental effects both crucial and challenging. The main message of this paper is a warning to the community of chemists, physicists, and material scientists working in the field: the adiabatic approximation implicitly imposed to the treatment of fast environmental degrees of freedom in quantum-classical and continuum solvation models leads to uncontrolled results. Several approximation schemes were proposed to mitigate the issue, but we underline that the adiabatic approximation to fast solvation is inadequate and cannot be improved; rather, it must be abandoned in favor of an antiadiabatic approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0042058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!